Advertisement

Physical principles of the formation of a nanoparticle electric double layer in metal hydrosols

  • A. P. GavrilyukEmail author
  • I. L. Isaev
  • V. S. Gerasimov
  • S. V. Karpov
Original Contribution
  • 55 Downloads

Abstract

The Brownian dynamics method is employed to study the formation of an electrical double layer (EDL) on the metal nanoparticle (NP) surface in hydrosols during adsorption of electrolyte ions from the interparticle medium. Also studied is the charge accumulation by NPs in the Stern layer. To simulate the process of the formation of EDL, we took into account the effect of image forces and specific adsorption, dissipative and random forces, and the degree of hydration of adsorbed ions on the EDL structure. The employed model makes it possible to determine the charge of NPs and the structure of EDL. For the first time, the charge of both the diffuse part of EDL and the dense Stern layer has been determined. A decrease in the electrolyte concentration (below c < 0.1 mol/l) has been found to result in dramatic changes in the formation of the Stern layer.

Graphical abstract

Keywords

Nanoparticle Adsorption layer Elastic deformation Coagulation kinetics Elasticity modulus 

Notes

Funding information

The reported research was funded by the Russian Foundation for Basic Research and the government of the Krasnoyarsk territory, Krasnoyarsk Regional Fund of Science, grant No 18-42-243023, the RF Ministry of Education and Science, the State contract with Siberian Federal University for scientific research in 2017–2019.

Compliance with Ethical Standards

Conflict of interests

The authors confirm that there are no known conflicts of interest associated with this publication.

References

  1. 1.
    Rao C. N. R., Müller A, Cheetham AK (eds) (2004) The chemistry of nanomaterials. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  2. 2.
    Sonntag H, Strenge K (1970) Koagulation und stabilität disperser Systeme, 173 S., VEB Deutscher Verlag der Wissenschaften, vol 73. Preis: 30.80 MDN, Berlin, p 1971Google Scholar
  3. 3.
    French RH, Parsegian VA, Podgornik R, Rajter RF, Jagota A, Luo J, Asthagiri D, Chaudhury MK, Chiang Y-M, Granick S, Kalinin S, Kardar M, Kjellander R, Langreth DC, Lewis J, Lustig S, Wesolowski D, Wettlaufer JS, Ching W-Y, Finnis M, Houlihan F, von Lilienfeld OA, van Oss CJ, Zemb T (2010) Long range interactions in nanoscale science. Rev Modern Phys 82:1887–1944,6CrossRefGoogle Scholar
  4. 4.
    Walker DA, Kowalczyk B, de la Cruz MO, Grzybowski BA (2011) Electrostatics at the nanoscale. Nanoscale 3(4):1316CrossRefGoogle Scholar
  5. 5.
    Linse P (2005) Simulation of charged colloids in solutionGoogle Scholar
  6. 6.
    Henderson D, Boda D (2009) Insights from theory and simulation on the electrical double layer. Phys Chem Chem Phys 11:3822, 4CrossRefGoogle Scholar
  7. 7.
    Spohr E (1999) Molecular simulation of the electrochemical double layer. Electrochim Acta 44:1697–1705, 1CrossRefGoogle Scholar
  8. 8.
    Semashko OV, Brodskaya EN, Us’yarov OG (2005) Molecular dynamics simulation of the electrical double layer of spherical macroion. Colloid J 67:625–630, 9CrossRefGoogle Scholar
  9. 9.
    Fahrenberger F, Xu Z, Holm C (2014) Simulation of electric double layers around charged colloids in aqueous solution of variable permittivity. J Chem Phys 141:064902, 8CrossRefGoogle Scholar
  10. 10.
    Messina R, Holm C, Kremer K (2001) Effect of colloidal charge discretization in the primitive model. Eur Phys J E 4:363–370, 3CrossRefGoogle Scholar
  11. 11.
    Gan Z, Xing X, Xu Z (2012) Effects of image charges, interfacial charge discreteness, and surface roughness on the zeta potential of spherical electric double layers. J Chem Phys 137:169901, 10Google Scholar
  12. 12.
    Torrie GM, Valleau JP, Patey GN (1982) Electrical double layers. II. Monte Carlo and HNC studies of image effects. J Chem Phys 76:4615–4622, 5CrossRefGoogle Scholar
  13. 13.
    Emelyanenko KA, Emelyanenko AM, Boinovich L (2015) Image-charge forces in thin interlayers due to surface charges in electrolyte. Phys Rev E 91:032402, 3CrossRefGoogle Scholar
  14. 14.
    Izraelashvili JN (2011) Intermolecular and surface forces. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Campo MG, Raul Grigera J (2004) Molecular dynamics simulation of OH - in water. Mol Simul 30:537–542, 7CrossRefGoogle Scholar
  16. 16.
    Botti A, Bruni F, Imberti S, Ricci MA, Soper AK (2003) Solvation of hydroxyl ions in water. J Chem Phys 119:5001–5004, 9CrossRefGoogle Scholar
  17. 17.
    Heermann DW (1990) Computer simulation methods in theoretical physics. Springer, BerlinCrossRefGoogle Scholar
  18. 18.
    Tuckerman ME, Chandra A, Marx D (2006) Structure and dynamics of OH - (aq). Account Chem Res 39:151–158, 2CrossRefGoogle Scholar
  19. 19.
    Tuckerman ME, Marx D, Parrinello M (2002) The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–929, 6CrossRefGoogle Scholar
  20. 20.
    Patrito E, Paredes-Olivera P (2003) Adsorption of hydrated hydroxide and hydronium ions on Ag(111). A quantum mechanical investigation. Surf Sci 527:149–162, 3CrossRefGoogle Scholar
  21. 21.
    Nechaev IV, Vvedenskii AV (2009) Quantum chemical modeling of hydroxide ion adsorption on group IB metals from aqueous solutions. Protect Met Phys Chem Surf 45:391–397, 7CrossRefGoogle Scholar
  22. 22.
    Bunkin NF, Bunkin FV (2003) Screening of strongly charged macroparticles in liquid electrolyte solutions. J Exper Theor Phys 96:730–746, 4CrossRefGoogle Scholar
  23. 23.
    Mateescu EM, Jeppesen C, Pincus P (1999) Overcharging of a spherical macroion by an oppositely charged polyelectrolyte. Europhys Lett (EPL) 46:493–498, 5CrossRefGoogle Scholar
  24. 24.
    Park SY, Bruinsma RF, Gelbart WM (1999) Spontaneous overcharging of macro-ion complexes. Europhys Lett (EPL) 46:454–460, 5CrossRefGoogle Scholar
  25. 25.
    Joanny J (1999) Polyelectrolyte adsorption and charge inversion. Eur Phys J B 9:117–122, 5CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Computational Modeling SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.L. V. Kirensky Institute of PhysicsFederal Research Center KSC SB RASKrasnoyarskRussia
  4. 4.Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations