Colloid and Polymer Science

, Volume 297, Issue 10, pp 1287–1299 | Cite as

Influence of copolymer chain sequence on electrode latex binder for lithium-ion batteries

  • Zhenan Zheng
  • Xiang GaoEmail author
  • Yingwu Luo
Original Contribution


Electrode binders have significant influences on lithium-ion battery performance. Good binders should be able to absorb electrolyte to accelerate lithium-ion transport while simultaneously maintaining adequate adhesion and mechanical strength after swelling. Currently, most polymer binders are based on homo or random copolymers so they may only meet one of these requirements, as an improvement in electrolyte swelling ability is detrimental to mechanical strength, and vice versa. This work investigates whether the design of chain sequence can resolve this contradiction. Reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization is employed to synthesize copolymer latex with different chain sequences as electrode binders, which are examined in both LiFePO4 cathode and silicon anodes. The results show a triblock copolymer chain sequence gives the best performance. The microphase separation in triblock copolymer distributes functionalities of electrolyte affinity and strength maintenance into disparate blocks and therefore satisfies both requirements simultaneously. The advantages of triblock chain sequence are demonstrated by superior ionic conductivity, mechanical strength after electrolyte absorption, and lithium-ion diffusion coefficient and then lead to better battery performance compared with random counterpart and commercial aqueous binders.


Electrode binder Chain sequence Living radical polymerization Lithium-ion battery 


Funding information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21574115, 21875213, 21636008).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4548_MOESM1_ESM.doc (4.1 mb)
ESM 1 (DOC 4209 kb)


  1. 1.
    Chou SL, Pan Y, Wang JZ, Liu HK, Dou SX (2014) Small things make a big difference: binder effects on the performance of Li and Na batteries. Phys Chem Chem Phys 16(38):20347–20359PubMedCrossRefGoogle Scholar
  2. 2.
    Mazouzi D, Karkar Z, Hernandez CR, Manero PJ, Guyomard D, Roue L, Lestriez B (2015) Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J Power Sources 280:533–549CrossRefGoogle Scholar
  3. 3.
    Chen H, Ling M, Hencz L, Ling HY, Li GR, Lin Z, Liu G, Zhang SQ (2018) Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem Rev 118(18):8936–8982PubMedCrossRefGoogle Scholar
  4. 4.
    Bommier C, Ji XL (2018) Electrolytes, SEI formation, and binders: a review of nonelectrode factors for sodium-ion battery anodes. Small 14(16):1703576CrossRefGoogle Scholar
  5. 5.
    Kwon TW, Choi JW, Coskun A (2018) The emerging era of supramolecular polymeric binders in silicon anodes. Chem Soc Rev 47(6):2145–2164PubMedCrossRefGoogle Scholar
  6. 6.
    Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K (2011) Study on polymer binders for high-capacity SiO negative electrode of Li-ion batteries. J Phys Chem C 115(27):13487–13495CrossRefGoogle Scholar
  7. 7.
    Li JT, Wu ZY, Lu YQ, Zhou Y, Huang QS, Huang L, Sun SG (2017) Water soluble binder, an electrochemical performance booster for electrode materials with high energy density. Adv Energy Mater 7(24):1701185CrossRefGoogle Scholar
  8. 8.
    Shi Y, Zhou XY, Yu GH (2017) Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc Chem Res 50(11):2642–2652PubMedCrossRefGoogle Scholar
  9. 9.
    Choi S, Kwon TW, Coskun A, Choi JW (2017) Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357(6348):279–283PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Ryu J, Park S (2017) Sliding chains keep particles together. Science 357(6348):250–251PubMedCrossRefGoogle Scholar
  11. 11.
    Magasinski A, Zdyrko B, Kovalenko I, Hertzberg B, Burtovyy R, Huebner CF, Fuller TF, Luzinov I, Yushin G (2010) Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl Mater Interfaces 2(11):3004–3010PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang Z, Zeng T, Qu C, Lu H, Jia M, Lai Y, Li J (2012) Cycle performance improvement of LiFePO4 cathode with polyacrylic acid as binder. Electrochim Acta 80:440–444CrossRefGoogle Scholar
  13. 13.
    Lee JH, Paik U, Hackley VA, Choi YM (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152(9):A1763–A1769CrossRefGoogle Scholar
  14. 14.
    Yen JP, Lee CM, Wu TL, Wu HC, Su CY, Wu NL, Hong JL (2012) Enhanced high-temperature cycle-life of mesophase graphite anode with styrene-butadiene rubber/carboxymethyl cellulose binder. ECS Electrochem Lett 1(6):A80–A82CrossRefGoogle Scholar
  15. 15.
    He M, Yuan LX, Zhang WX, Hu XL, Huang YH (2011) Enhanced cyclability for sulfur cathode achieved by a water-soluble binder. J Phys Chem C 115(31):15703–15709CrossRefGoogle Scholar
  16. 16.
    Liu WR, Yang MH, Wu HC, Chiao SM, Wu NL (2005) Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem Solid-State Lett 8(2):A100–A103CrossRefGoogle Scholar
  17. 17.
    Song J, Zhou M, Yi R, Xu T, Gordin ML, Tang D, Yu Z, Regula M, Wang D (2014) Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv Funct Mater 24(37):5904–5910CrossRefGoogle Scholar
  18. 18.
    Koo B, Kim H, Cho Y, Lee KT, Choi NS, Cho J (2012) A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew Chem Int Ed 51(35):8762–8767CrossRefGoogle Scholar
  19. 19.
    Park HK, Kong BS, Oh ES (2011) Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ion batteries. Electrochem Commun 13(10):1051–1053CrossRefGoogle Scholar
  20. 20.
    Zhang R, Yang X, Zhang D, Qiu H, Fu Q, Na H, Guo Z, Du F, Chen G, Wei Y (2015) Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries. J Power Sources 285:227–234CrossRefGoogle Scholar
  21. 21.
    Li J, Lewis RB, Dahn JR (2007) Sodium carboxymethyl cellulose - a potential binder for Si negative electrodes for Li-ion batteries. Electrochem Solid-State Lett 10(2):A17–A20CrossRefGoogle Scholar
  22. 22.
    Lim S, Kim S, Ahn KH, Lee SJ (2015) Stress development of Li-ion battery anode slurries during the drying process. Ind Eng Chem Res 54(23):6146–6155CrossRefGoogle Scholar
  23. 23.
    Abetz V, Simon PFW (2005) Phase behaviour and morphologies of block copolymers[M]//Block copolymers I. Springer, Berlin, Heidelberg, 125–212Google Scholar
  24. 24.
    Kwon TW, Jeong YK, Lee I, Kim TS, Choi JW, Coskun A (2014) Systematic molecular-level design of binders incorporating Meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv Mater 26(47):7979–7985PubMedCrossRefGoogle Scholar
  25. 25.
    Wu M, Xiao X, Vukmirovic N, Xun S, Das PK, Song X, Olalde-Velasco P, Wang D, Weber AZ, Wang LW, Battaglia VS, Yang W, Liu G (2013) Toward an ideal polymer binder design for high-capacity battery anodes. J Am Chem Soc 135(32):12048–12056PubMedCrossRefGoogle Scholar
  26. 26.
    Liu G, Xun S, Vukmirovic N, Song X, Olalde-Velasco P, Zheng H, Battaglia VS, Wang L, Yang W (2011) Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv Mater 23(40):4679–4683PubMedCrossRefGoogle Scholar
  27. 27.
    Zhao H, Wang Z, Lu P, Jiang M, Shi F, Song X, Zheng Z, Zhou X, Fu Y, Abdelbast G, Xiao X, Liu Z, Battaglia VS, Zaghib K, Liu G (2014) Toward practical application of functional conductive polymer binder for a high-energy lithium-ion battery design. Nano Lett 14(11):6704–6710PubMedCrossRefGoogle Scholar
  28. 28.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562CrossRefGoogle Scholar
  29. 29.
    Moad G, Rizzardo E, Thang SH (2008) Radical addition-fragmentation chemistry in polymer synthesis. Polymer 49(5):1079–1131CrossRefGoogle Scholar
  30. 30.
    Moad G, Rizzardo E, Thang SH (2009) Living radical polymerization by the RAFT process - a second update. Aust J Chem 62(11):1402–1472CrossRefGoogle Scholar
  31. 31.
    Huang J, Zhao S, Gao X, Luo Y, Li B (2014) RAFT ab initio emulsion polymerization of styrene using poly(acrylic acid)-b-polystyrene trithiocarbonate of various structures as mediator and surfactant. Macromol React Eng 8(10):696–705CrossRefGoogle Scholar
  32. 32.
    Luo YW, Wang R, Yang L, Yu B, Li BG, Zhu SP (2006) Effect of reversible addition-fragmentation transfer (RAFT) reactions on (mini)emulsion polymerization kinetics and estimate of RAFT equilibrium constant. Macromolecules 39(4):1328–1337CrossRefGoogle Scholar
  33. 33.
    Wang X, Luo Y, Li B, Zhu S (2009) Ab initio batch emulsion RAFT polymerization of styrene mediated by poly(acrylic acid-b-styrene) trithicicarbonate. Macromolecules 42(17):6414–6421CrossRefGoogle Scholar
  34. 34.
    Bohnke O, Frand G, Rezrazi M, Rousselot C, Truche C (1993) Fast ion transport in new lithium electrolytes gelled with PMMA. 1. Influence of polymer concentration. Solid State Ionics 66(1):97–104CrossRefGoogle Scholar
  35. 35.
    Shi J, Yang YF, Shao HX (2018) Co-polymerization and blending based PEO/PMMA/P(VDF-HFP) gel polymer electrolyte for rechargeable lithium metal batteries. J Membr Sci 547:1–10CrossRefGoogle Scholar
  36. 36.
    Guo Y, Gao X, Luo Y (2015) Mechanical properties of gradient copolymers of styrene and n-butyl acrylate. J Polym Sci B Polym Phys 53:860–868CrossRefGoogle Scholar
  37. 37.
    Young WS, Epps III TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45(11):4689–4697CrossRefGoogle Scholar
  38. 38.
    Young WS, Kuan WF, Epps III TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci B Polym Phys 52(1):1–16CrossRefGoogle Scholar
  39. 39.
    Chan CK, Peng H, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2007) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3(1):31–35PubMedCrossRefGoogle Scholar
  40. 40.
    Su X, Wu Q, Li J, Xiao X, Lott A, Lu W, Sheldon BW, Wu J (2014) Silicon-based nanomaterials for lithium-ion batteries: a review. Adv Energy Mater 4(1):1300882CrossRefGoogle Scholar
  41. 41.
    Porcher W, Moreau P, Lestriez B, Jouanneau S, Guyomard D (2008) Is LiFePO4 stable in water? Toward greener Li-ion batteries. Electrochem Solid-State Lett 11(1):A4–A8CrossRefGoogle Scholar
  42. 42.
    Porcher W, Moreau P, Lestriez B, Jouanneau S, Le Cras F, Guyomard D (2008) Stability of LiFePO4 in water and consequence on the Li battery behaviour. Ionics 14:583–587CrossRefGoogle Scholar
  43. 43.
    Petrucci RH, Herring FG, Bissonnette C, Madura JD (2017) General chemistry: principles and modern applications: Eleventh Edition[M]. Pearson Canada Inc., Toronto, OntarioGoogle Scholar
  44. 44.
    Dehmelt H (1988) A single atomic particle forever floating at rest in free space: new value for electron radius. Phys Scr 1988(T22):102CrossRefGoogle Scholar
  45. 45.
    Park M, Zhang X, Chung M, Less GB, Sastry AM (2010) A review of conduction phenomena in Li-ion batteries. J Power Sources 195(24):7904–7929CrossRefGoogle Scholar
  46. 46.
    Liu H, Li C, Zhang H, Fu L, Wu Y, Wu H (2006) Kinetic study on LiFePO4/C nanocomposites synthesized by solid state technique. J Power Sources 159(1):717–720CrossRefGoogle Scholar
  47. 47.
    Zhu YJ, Xu YH, Liu YH, Luo C, Wang CS (2013) Comparison of electrochemical performances of olivine NaFePO4 in sodium-ion batteries and olivine LiFePO4 in lithium-ion batteries. Nanoscale 5:780–787PubMedCrossRefGoogle Scholar
  48. 48.
    Ven AVD, Bhattacharya J, Belak AA (2013) Understanding Li diffusion in Li-intercalation compounds. Acc Chem Res 46(5):1216–1225PubMedCrossRefGoogle Scholar
  49. 49.
    Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1):45–51CrossRefGoogle Scholar
  50. 50.
    Churikov A, Ivanishchev A, Ivanishcheva I, Sycheva V, Khasanova N, Antipov E (2010) Determination of lithium diffusion coefficient in LiFePO4 electrode by galvanostatic and potentiostatic intermittent titration techniques. Electrochim Acta 55(8):2939–2950CrossRefGoogle Scholar
  51. 51.
    Verma P, Maire P, Novak P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341CrossRefGoogle Scholar
  52. 52.
    Michan AL, Divitini G, Pell AJ, Leskes M, Ducati C, Grey CP (2016) Solid electrolyte interphase growth and capacity loss in silicon electrodes. J Am Chem Soc 138(25):7918–7931PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.The State Key Laboratory of Chemical Engineering, College of Chemical and Biological EngineeringZhejiang UniversityHangzhouChina
  2. 2.Ningbo Research InstituteZhejiang UniversityNingboChina

Personalised recommendations