Advertisement

Colloid and Polymer Science

, Volume 297, Issue 9, pp 1177–1182 | Cite as

Crossover behavior on temperature dependence of volume of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)–based hydrogels

  • Nobuhiro Takaoka
  • Jun-ichi Horinaka
  • Toshikazu TakigawaEmail author
Original Contribution
  • 48 Downloads

Abstract

We have investigated the temperature dependence of volume of hydrogels composed of a poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-b-PPO-b-PPO) copolymer. Mechanical tests for the gels at various temperatures indicate that physical crosslinks are introduced into the gel systems around the critical micelle temperature for solutions of the triblock copolymer. The origin of the marked volume change for the PEO-b-PPO-b-PEO–based hydrogels can be explained by the crossover between the two states with and without aggregates of the PPO blocks.

Keywords

Poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)–based hydrogel Micelle formation Crossover behavior Volume phase transition 

Notes

Acknowledgements

The authors wish to thank Dr. Satoshi Yamasaki of Mitsui Chemicals Co. for useful suggestions and comments on the synthesis of network polymers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dušek K, Patterson D (1968). J Polym Sci Part-A 26:1209Google Scholar
  2. 2.
    Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40:820–823CrossRefGoogle Scholar
  3. 3.
    Ilavský M (1982). Macromolecules 15:786CrossRefGoogle Scholar
  4. 4.
    Hirokawa Y, Tanaka T, Matsuo ES (1984) Volume phase transition in a nonionic gel. J Chem Phys 81:6379–6380CrossRefGoogle Scholar
  5. 5.
    Vasilevskaya VV, Khokhlov AR (1986). Polymer Science USSR 28A:316Google Scholar
  6. 6.
    Siegel RA, Firestone BA (1986). Macromolecules 21:3254CrossRefGoogle Scholar
  7. 7.
    Otake K, Inomata H, Konno M, Saito S (1990) Thermal analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289CrossRefGoogle Scholar
  8. 8.
    Hirotsu S (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels. J Chem Phys 94:3949–3957CrossRefGoogle Scholar
  9. 9.
    Takigawa T, Takahashi K, Araki H, Nakamura M, Masuda T (2000). Polym J 33:297CrossRefGoogle Scholar
  10. 10.
    Tochishita N, Horinaka J, Takigawa T (2016) Anomaly in the coefficient of performance of the volume phase transition process of poly(N-isopropylacrylamide) gels induced by mechanical stress. Polym J 48:741–744CrossRefGoogle Scholar
  11. 11.
    Tanaka T, Fillmore DJ, Sun S-T, Nishio I, Swislow G, Shah A (1980) Phase transitions in ionic gels. Phys Rev Lett 45:1636–1639CrossRefGoogle Scholar
  12. 12.
    Takigawa T, Ikeda T, Takakura Y, Masuda T (2002) Swelling and stress–relaxation of poly(N-isopropylacrylamide) gels in the collapsed state. J Chem Phys 117:7306–7312CrossRefGoogle Scholar
  13. 13.
    Heskins M, Guillet JE (1968) Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem A2 2:1441–1455CrossRefGoogle Scholar
  14. 14.
    Fujishige S, Kubota K, Ando I (1989) Phase transition of aqueous solutions of poly(N-isopropylacrylamide) and poly(N-isopropylmethacrylamide). J Phys Chem 93:3311–3313CrossRefGoogle Scholar
  15. 15.
    Kawaguchi T, Kojima Y, Osa M, Yoshizaki T (2008) Cloud points in aqueous poly(N-isopropylacrylamide) Solutions. Polym J 40:455–459CrossRefGoogle Scholar
  16. 16.
    Takahashi K, Takigawa T, Masuda T (2004) Swelling and deswelling kinetics of poly(N-isopropylacrylamide) gels. J Chem Phys 120:2972–2979CrossRefGoogle Scholar
  17. 17.
    Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212CrossRefGoogle Scholar
  18. 18.
    Bodratti AM, Alexandridis P (2018) Formulation of poloxamers for drug delivery. J Funct Biomater 9:11CrossRefGoogle Scholar
  19. 19.
    Alexandridis P, Holzwarth JF, Hatton TA (1994) Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–2425CrossRefGoogle Scholar
  20. 20.
    Alexandridis P, Athanassiou V, Fukuda S, Hatton TA (1994) Surface activity of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) copolymers. Langmuir 10:2604–2612CrossRefGoogle Scholar
  21. 21.
    Alejandro S, Daniel C, Julio SR, Gustavo AA (2003). J Biomater Sci Polymer Edn 14:227CrossRefGoogle Scholar
  22. 22.
    Alina A, Mircea T, Paul OS, Constantin D, Dumitru MV (2014) Novel crosslinked thermoresponsive hydrogels with controlled poly(ethylene glycol)—poly(propylene glycol) multiblock copolymer structure. Colloid Polym Sci 292:829—838Google Scholar
  23. 23.
    Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, IthacaGoogle Scholar
  24. 24.
    Treloar LRG (1975) The physics of rubber elasticity3rd edn. Clarendon Press, OxfordGoogle Scholar
  25. 25.
    Doi M (2013) Soft matter physics. Oxford University Press, OxfordCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nobuhiro Takaoka
    • 1
  • Jun-ichi Horinaka
    • 1
  • Toshikazu Takigawa
    • 1
    Email author
  1. 1.Department of Material ChemistryKyoto UniversityKyotoJapan

Personalised recommendations