Advertisement

Colloid and Polymer Science

, Volume 297, Issue 9, pp 1169–1176 | Cite as

Polyelectrolyte-colloid complex formation via polymerization: reaction kinetics in direct micelles, inverted micelles, and homogeneous solution studied by NMR and conductometry

  • I. M. ZorinEmail author
  • T. M. Shcherbinina
  • E. I. Demidov
  • E. V. Mechtaeva
  • N. A. Zorina
  • P. A. Fetin
  • A. Yu Bilibin
Original Contribution
  • 20 Downloads

Abstract

Formation of polyelectrolyte-surfactant complexes (PESCs) in polymerization process of corresponding amphiphilic monomer is a promising way of pure stoichiometric PESC obtained in salt-free systems. Polymerization of micelle-forming monomer dodecylammonium 2-acrylamido-2-methylpropanesulfonate (DDA-AMPS) in different media was studied by means of 1H-NMR and conductance measurements. Kinetics of polymerization in direct micelles, inverted micelles, and homogeneous solution was considered in terms of classical solution polymerization and microemulsion polymerization. Reaction orders on monomer and initiator were measured in water and dioxane. The rate of polymerization is strongly dependent on monomer micelle existence, being considerably higher in micellar solution than in homogeneous one.

Graphical abstract

Keywords

Micellar polymerization Microemulsion polymerization Kinetics Surfmer Polyelectrolyte-surfactant complex 

Notes

Acknowledgments

The work was performed on the equipment of the Research park of St. Petersburg State University: Center of Magnetic resonance and the Chemistry educational center.

Funding information

The work was supported by RFBR (grant #18-33-00618-mol_a) in the part of PESC synthesis and SEC studies performed by P.A. Fetin.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Gerber MJ, Walker LM (2006) Controlling dimensions of polymerized micelles: micelle template versus reaction conditions. Langmuir. 22:941–948.  https://doi.org/10.1021/la052297q CrossRefGoogle Scholar
  2. 2.
    Gerber MJ, Kline SR, Walker LM (2004) Characterization of rodlike aggregates generated from a cationic surfactant and a polymerizable counterion. Langmuir. 20:8510–8516.  https://doi.org/10.1021/la048929a CrossRefGoogle Scholar
  3. 3.
    Kuntz DM, Walker LM (2007) Solution behavior of rod-like polyelectrolyte-surfactant aggregates polymerized from wormlike micelles. J Phys Chem B 111:6417–6424.  https://doi.org/10.1021/jp0688308 CrossRefGoogle Scholar
  4. 4.
    Walker LM, Kuntz DM (2007) Wormlike micelles as a template for polymerization. Curr Opin Colloid Interface Sci 12:101–105.  https://doi.org/10.1016/j.cocis.2007.07.004 CrossRefGoogle Scholar
  5. 5.
    Kline S (2000) Structural evolution during micelle polymerization. J Appl Crystallogr 33:618–622.  https://doi.org/10.1107/S0021889899012753 CrossRefGoogle Scholar
  6. 6.
    Kline SR (1999) Polymerization of rodlike micelles. Langmuir. 15:2726–2732.  https://doi.org/10.1021/la981451o CrossRefGoogle Scholar
  7. 7.
    Summers M, Eastoe J, Davis S, Du Z, Richardson RM, Heenan RK, Steytler D, Grillo I (2001) Polymerization of cationic surfactant phases. Langmuir. 17:5388–5397.  https://doi.org/10.1021/la010541h CrossRefGoogle Scholar
  8. 8.
    Lerebours B, Perly B, Pileni MP (1989) Polymerization of cetyltrimethylammonium methacrylate direct micelles, Trends Colloid Interface Sci III. Prog Colloid Polym Sci 79:239–243.  https://doi.org/10.1007/BFb0116215 CrossRefGoogle Scholar
  9. 9.
    Lerebours B, Perly B, Pileni MP (1988) Polymerization of cetyltrimethylammonium methacrylate micellar solution. Chem Phys Lett 147:503–508.  https://doi.org/10.1016/0009-2614(88)85016-4 CrossRefGoogle Scholar
  10. 10.
    Hartmann PC, Dieudonné P, Sanderson RD (2005) Self-assembly and influence of the organic counterion in the ternary systems dodecylamine/acrylic acid/water and dodecylamine/methacrylic acid/water. J Colloid Interface Sci 284:289–297.  https://doi.org/10.1016/j.jcis.2004.10.009 CrossRefGoogle Scholar
  11. 11.
    Samakande A, Hartmann PC, Sanderson RD (2006) Synthesis and characterization of new cationic quaternary ammonium polymerizable surfactants. J Colloid Interface Sci 296:316–323.  https://doi.org/10.1016/j.jcis.2005.09.005 CrossRefGoogle Scholar
  12. 12.
    Nagai K, Ohishi Y (1987) Polymerization of surface-active monomers. II. Polymerization of quarternary alkyl salts of dimethylaminoethyl methacrylate with a different alkyl chain length. J Polym Sci Polym Chem 25:1–14.  https://doi.org/10.1002/pola.1987.080250101 CrossRefGoogle Scholar
  13. 13.
    Nagai K, Ohishi Y, Inaba H, Kudo S (1985) Polymerization of surface-active monomers. I. Micellization and polymerization of higher alkyl salts of dimethylaminoethyl methacrylate. J Polym Sci Polym Chem Ed 23:1221–1230.  https://doi.org/10.1002/pol.1985.170230425 CrossRefGoogle Scholar
  14. 14.
    Bezzaoucha F, Lochon P, Jonquières A, Fischer A, Brembilla A, Aïnad-Tabet D (2007) New amphiphilic polyacrylamides: synthesis and characterisation of pseudo-micellar organisation in aqueous media. Eur Polym J 43:4440–4452.  https://doi.org/10.1016/j.eurpolymj.2007.07.005 CrossRefGoogle Scholar
  15. 15.
    Bilibin AY, Sukhanova TM, Matuschkin NI, Mel’nikov AB, Zorin IM (2012) Polymerization of dodecylammonium 2-acrylamido-2-methylpropane sulfonate in solvents with different dielectric constants and study of the resulting ionic complexes. Macromol Symp 317–318:160–168.  https://doi.org/10.1002/masy.201100112 CrossRefGoogle Scholar
  16. 16.
    Bilibin AY, Shcherbinina TM, Kondratenko YA, Zorina NA, Zorin IM (2015) Micellar polymerization of alkylammonium 2-acrylamido-2-methylpropane sulfonates in the solvents of different polarities and properties of resulting polyelectrolyte-surfactant complexes. Colloid Polym Sci 293:1215–1225.  https://doi.org/10.1007/s00396-015-3497-8 CrossRefGoogle Scholar
  17. 17.
    Tajima K, Aida T (2000) Controlled polymerizations with constrained geometries. Chem Commun:2399–2412.  https://doi.org/10.1039/b007618j
  18. 18.
    Yegorov VV, Batrakova YV, Zubov VP (1988) Influence of the nature of the initiator on the kinetics of radical polymerization of N,N-dimethyl-N-acetoxydecyl-methacryloylethyl ammonium bromide in water. Polym Sci USSR 30:1972–1975.  https://doi.org/10.1016/0032-3950(88)90047-0 CrossRefGoogle Scholar
  19. 19.
    Yegorov VV, Zaitsev SY, Zubov VP (1991) Radical polymerization of monomers capable of association in water. Review. Polym. Sci. U.S.S.R. 33:1475–1496.  https://doi.org/10.1016/0032-3950(91)90031-K CrossRefGoogle Scholar
  20. 20.
    Yegorov VV, Batrakova YV, Zubov VP (1990) Radical polymerization in spherical micelles of unsaturated alkylammonium halides in water. Polym. Sci. U.S.S.R. 32:861–866.  https://doi.org/10.1016/0032-3950(90)90216-S CrossRefGoogle Scholar
  21. 21.
    Egorov VV, Zubov VP (1987) Radical polymerisation in the associated species of ionogenic surface-active monomers in water. Russ Chem Rev 56:1153–1165.  https://doi.org/10.1070/RC1987v056n12ABEH003328 CrossRefGoogle Scholar
  22. 22.
    Egorov V (1990) Radical polymerization in micelles of surface-active monomers. Makromol Chemie Macromol Symp 31:157–161.  https://doi.org/10.1002/masy.19900310113 CrossRefGoogle Scholar
  23. 23.
    Egorov VV (1995) Radical polymerization of micelle-forming monomers in water. J. Polym. Sci. A Polym. Chem. 33:1727–1733.  https://doi.org/10.1002/pola.1995.080331020 CrossRefGoogle Scholar
  24. 24.
    Cochin D, Zana R, Candau FF (1993) Photopolymerization of micelle-forming monomers. 2. Kinetic study and mechanism. Macromolecules. 26:5765–5771.  https://doi.org/10.1021/ma00073a034 CrossRefGoogle Scholar
  25. 25.
    Cochin D, Zana R, Candau F (1993) Polymerization of micelle-forming monomers: mechanistic study and characterization of the systems before and after polymerization. Polym Int 30:491–498.  https://doi.org/10.1002/pi.4990300412 CrossRefGoogle Scholar
  26. 26.
    Zorin IM, Podolskaya EP, Bilibin AY (2019) On the kinetics of micellar polymerization. Acryloylaminoalkanoates case study. Eur Polym J 110:355–363.  https://doi.org/10.1016/j.eurpolymj.2018.11.045 CrossRefGoogle Scholar
  27. 27.
    Morgan JD, Lusvardi KM, Kaler EW (1997) Kinetics and mechanism of microemulsion polymerization of hexyl methacrylate. Macromolecules. 30:1897–1905.  https://doi.org/10.1021/ma9613704 CrossRefGoogle Scholar
  28. 28.
    Shulevich YV, Petzold G, Navrotskii AV, Novakov IA (2012) Properties of polyelectrolyte–surfactant complexes obtained by polymerization of an ionic monomer in a solution of an oppositely charged surfactant. Colloids Surfaces A Physicochem Eng Asp 415:148–152.  https://doi.org/10.1016/j.colsurfa.2012.10.013 CrossRefGoogle Scholar
  29. 29.
    Shulevich Y, Dukhanina E, Navrotskii A, Novakov I (2018) Polymerization of trimethylmethacryloyloxyethylammonium methyl sulfate in surfactant micellar solution of sodium alkyl sulfates and properties of the resultant polyelectrolytes. Colloid Polym Sci 296:871–881.  https://doi.org/10.1007/s00396-018-4302-2 CrossRefGoogle Scholar
  30. 30.
    Koetz J, Kosmella S, Beitz T (2001) Self-assembled polyelectrolyte systems. Prog Polym Sci 26:1199–1232.  https://doi.org/10.1016/S0079-6700(01)00016-8 CrossRefGoogle Scholar
  31. 31.
    Bilibin AY, Sukhanova TM, Kondratenko YA, Zorin IM (2013) n-Alkyl ammonium 2-acrylamido-2-methylpropanesulfonates: synthesis, properties, and polymerization. Polym Sci Ser B 55:22–30.  https://doi.org/10.1134/S1560090412100028 CrossRefGoogle Scholar
  32. 32.
    Zorin IM, Shcherbinina TM, Mel’nikov AB, Molchanov VS, Bilibin AY (2014) A study of n-dodecylammonium acrylamido-2-methylpropanesulfonate association in aqueous solutions. Colloid J 76:314–318.  https://doi.org/10.1134/S1061933X14030168 CrossRefGoogle Scholar
  33. 33.
    Bilibin AY, Shcherbinina TM, Girbasova NV, Lebedev VT, Kulvelis YV, Molchanov VS, Zorin IM (2016) Colloidal properties of polymerizable counterion surfmers solutions based on alkylamino 2-acrylamido-2-methylpropanesulfonates in different solvents. Des Monomers Polym 19:369–380.  https://doi.org/10.1080/15685551.2016.1169371 CrossRefGoogle Scholar
  34. 34.
    Tsvetkov NV, Fetin PA, Lezov AA, Gubarev AS, Achmadeeva LI, Lezova AA, Zorin IM, Bilibin AY (2015) Colloid solution of surfactant monomers and polyelectrolyte: polymerization and properties of the resulting interpolyelectrolyte complexes. J Mol Liq 211:239–246.  https://doi.org/10.1016/j.molliq.2015.07.003 CrossRefGoogle Scholar
  35. 35.
    Andreeva LN, Shcherbinina TM, Zorin IM, Bezrukova MA, Bushin SV, Bilibin AY (2013) Molecular, conformational, and optical characteristics of poly(dodecylammonium-2-acrylamido-2-methylpropanesulfonate) in organic solvents. Polym Sci Ser A 55:289–294.  https://doi.org/10.1134/S0965545X13050015 CrossRefGoogle Scholar
  36. 36.
    Yo P, Chow LMG (2005) Microemulsion polymerizations and reactions. Adv Polym Sci 175:257–298.  https://doi.org/10.1007/b100117 CrossRefGoogle Scholar
  37. 37.
    Tsvetkov NV, Andreeva LN, Zorin IM, Bushin SV, Lebedeva EV, Strelina IA, Bezrukova MA, Lezov AA, Makarov IA, Bilibin AYu (2011) Synthesis, hydrodynamic, and conformational properties of poly(N-acryloyl-11-aminoundecanoic acid) in solutions. Polym Sci Ser A 53:355–363.  https://doi.org/10.1134/S0965545X11050087

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. M. Zorin
    • 1
    Email author
  • T. M. Shcherbinina
    • 1
  • E. I. Demidov
    • 1
  • E. V. Mechtaeva
    • 1
  • N. A. Zorina
    • 1
  • P. A. Fetin
    • 1
  • A. Yu Bilibin
    • 1
  1. 1.Department of Macromolecular Chemistry, Institute of ChemistrySt. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations