Colloid and Polymer Science

, Volume 297, Issue 9, pp 1149–1159 | Cite as

Langmuir film formation of amphiphilic hybrid block copolymers based on poly(ethylene glycol) and poly(methacrylo polyhedral oligomeric silsesquioxane)

  • Nazmul Hasan
  • Asad Ullah
  • Shakir Ullah
  • Jörg Kressler
  • Hazrat HussainEmail author
Original Contribution


The Langmuir film formation of poly(ethylene glycol) (PEG)- and poly(methacrylo polyhedral oligomeric silsesquioxane) P(MA-POSS)-based diblock copolymers (PEG5k-b-P(MA-POSS)x) at the air/water interface is investigated. While the Langmuir film formed by the PEG5k collapses at π ≈ 8 mN m−1, the PEG5k-b-P(MA-POSS)x forms a stable film on the water surface revealing various phase transitions in surface pressure vs mean molecular area (π-mmA) isotherm—manifested by various pseudo-plateaus during compression. At higher surface coverage, the π-mmA isotherm exhibits a phase transition that is attributed to the transformation of the P(MA-POSS) monolayer into a multilayer film that is confirmed by AFM measurements of the Langmuir-Blodgett films fabricated before and after the phase transition and direct infrared reflection absorption spectroscopy of the Langmuir film during compression. At a still higher surface pressure, another pseudo-plateau is observed that is assigned to the ultimate film collapse as verified by the Brewster angle microscopy.

Graphical abstract



Langmuir film POSS Hybrid Block copolymer Langmuir-Blodgett Amphiphilic 



The AFM measurements were carried out within the cooperation of the SFB TRR 102 (project B03, Thomas Thurn-Albrecht).

Funding information

HH received financial support from the Higher Commission (HEC) of Pakistan under NRPU project no. 20-3074/NRPU/R&D/HEC/13 and QAU URF. JK received financial support from the Deutsche Forschungsgemeinschaft (SFB TRR 102, project B07).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4517_MOESM1_ESM.docx (6.7 mb)
ESM 1 (DOCX 6903 kb)


  1. 1.
    Winterhalter M, Bürner H, Marzinka S, Benz R, Kasianowicz JJ (1995) Interaction of poly(ethylene-glycols) with air-water interfaces and lipid monolayers: investigations on surface pressure and surface potential. Biophys J 69:1372–1381CrossRefGoogle Scholar
  2. 2.
    Lee W, Ni S, Deng J, Kim BS, Satija SK, Mather PT, Esker AR (2007) Telechelic poly(ethylene glycol)-POSS amphiphiles at the air/water interface. Macromolecules 40:682–688CrossRefGoogle Scholar
  3. 3.
    Fuchs C, Hussain H, Amado E, Busse K, Kressler J (2015) Self-organization of poly(ethylene oxide) on the surface of aqueous salt solutions. Macromol Rapid Commun 36:211–218CrossRefGoogle Scholar
  4. 4.
    Deschênes L, Lyklema J, Danis C, Saint-Germain F (2015) Phase transitions in polymer monolayers: application of the Clapeyron equation to PEO in PPO–PEO Langmuir film. Adv Colloid Interf Sci 222:199–214CrossRefGoogle Scholar
  5. 5.
    James J, Ramalechume C, Mandal AB (2011) Two-dimensional surface properties of PEO-PPO-PEO triblock copolymer film at the air/water interface in the absence and presence of Tyr-Phe dipeptide, Val-Tyr-Val tripeptide, SDS and stearic acid. Colloids Surf B: Biointerfaces 82:345–353CrossRefGoogle Scholar
  6. 6.
    Busse K, Fuchs C, Hasan N, Pulst M, Kressler J (2018) Crystallization of poly(ethylene oxide) on the surface of aqueous salt solutions studied by GI-WAXS. Langmuir 34:12759–12763CrossRefGoogle Scholar
  7. 7.
    Fuchs C, Busse K, Flieger A-K, Kressler J (2016) Polymer crystallization on the surface of water or aqueous salt solution. Chem Eng Technol 39:1333–1340CrossRefGoogle Scholar
  8. 8.
    Peetla C, Graf K, Kressler J (2006) Langmuir monolayer and Langmuir–Blodgett films of amphiphilic triblock copolymers with water-soluble middle block. Colloid Polym Sci 285:27–37CrossRefGoogle Scholar
  9. 9.
    Gonçalves da Silva AM, Filipe EJM (1996) Interfacial behavior of poly(styrene)−poly(ethylene oxide) diblock copolymer monolayers at the air−water interface. Hydrophilic block chain length and temperature influence. Langmuir 12:6547–6553CrossRefGoogle Scholar
  10. 10.
    Barentin C, Muller P, Joanny JF (1998) Polymer brushes formed by end-capped poly(ethylene oxide) (PEO) at the air-water interface. Macromolecules 31:2198–2211CrossRefGoogle Scholar
  11. 11.
    Fuchs C, Hussain H, Schwieger C, Schulz M, Binder WH, Kressler J (2015) Molecular arrangement of symmetric and non-symmetric triblock copolymers of poly(ethylene oxide) and poly(isobutylene) at the air/water interface. J Colloid Interface Sci 437:80–89CrossRefGoogle Scholar
  12. 12.
    Feng H, Lu X, Wang W et al (2017) Block copolymers: synthesis, self-assembly, and applications. Polymers 9:1–31CrossRefGoogle Scholar
  13. 13.
    Deng J, Farmer-Creely CE, Viers BD, Esker AR (2004) Unique rodlike surface morphologies in trisilanolcyclohexyl polyhedral oligomeric silsesquioxane films. Langmuir 20:2527–2530CrossRefGoogle Scholar
  14. 14.
    Kou X (2013) Synthesis of polyhedral oligomeric silsesquioxane (POSS) functionalized carbon nanotubes. Dissertation, University of Southern MississippiGoogle Scholar
  15. 15.
    Wang X, Xuan S, Song L, Yang H, Lu H, Hu Y (2012) Synergistic effect of POSS on mechanical properties, flammability, and thermal degradation of intumescent flame retardant polylactide composites. J Macromol Sci Part B 51:255–268CrossRefGoogle Scholar
  16. 16.
    Gnanasekaran D, Madhavpan K, Reddy RSR (2009) Developments of polyhedral oligomeric silsesquioxanes (POSS), POSS nanocomposites and their applications: a review. J Sci Ind Res 68:437–464Google Scholar
  17. 17.
    Mohamed GM, Jheng Y-R, Yeh S-L et al (2017) Unusual emission of polystyrene-based alternating copolymers incorporating aminobutyl maleimide fluorophore-containing polyhedral oligomeric silsesquioxane nanoparticles. Polymers 9:1–20CrossRefGoogle Scholar
  18. 18.
    Mohamed MG, Hsu K-C, Hong J-L, Kuo S-W (2016) Unexpected fluorescence from maleimide-containing polyhedral oligomeric silsesquioxanes: nanoparticle and sequence distribution analyses of polystyrene-based alternating copolymers. Polym Chem 7:135–145CrossRefGoogle Scholar
  19. 19.
    Du F, Tian J, Wang H et al (2012) Synthesis and luminescence of POSS-containing perylene bisimide-bridged amphiphilic polymers. Macromolecules 45:3086–3093CrossRefGoogle Scholar
  20. 20.
    Lin H, Wan X, Jiang X, Wang Q, Yin J (2011) A nanoimprint lithography hybrid photoresist based on the thiol–ene system. Adv Funct Mater 21:2960–2967CrossRefGoogle Scholar
  21. 21.
    Tuteja A, Choi W, Ma M, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318:1618–1622CrossRefGoogle Scholar
  22. 22.
    Leng Y, Zhao J, Jiang P, Lu D (2016) POSS-derived solid acid catalysts with excellent hydrophobicity for highly efficient transformations of glycerol. Catal Sci Technol 6:875–881CrossRefGoogle Scholar
  23. 23.
    Létant SE, Herberg J, Dinh LN, Maxwell RS, Simpson RL, Saab AP (2007) Structure and catalytic activity of POSS-stabilized Pd nanoparticles. Catal Commun 8:2137–2142CrossRefGoogle Scholar
  24. 24.
    Liu Y-L, Fangchiang M-H (2009) Polyhedral oligomeric silsesquioxane nanocomposites exhibiting ultra-low dielectric constants through POSS orientation into lamellar structures. J Mater Chem 19:3643–3647CrossRefGoogle Scholar
  25. 25.
    Liu L, Yuan Y, Huang Y, Yu H, Yang J (2017) A new mechanism for the low dielectric property of POSS nanocomposites: the key role of interfacial effect. Phys Chem Chem Phys 19:14503–14511CrossRefGoogle Scholar
  26. 26.
    Loh XJ, Zhang Z-X, Mya KY, Wu YL, He CB, Li J (2010) Efficient gene delivery with paclitaxel-loaded DNA-hybrid polyplexes based on cationic polyhedral oligomeric silsesquioxanes. J Mater Chem 20:10634–10642CrossRefGoogle Scholar
  27. 27.
    Pu Y, Zhang L, Zheng H et al (2013) Synthesis and drug release of star-shaped poly(benzyl L-aspartate)-block-poly(ethylene glycol) copolymers with POSS cores. Macromol Biosci 14:289–297CrossRefGoogle Scholar
  28. 28.
    Pu Y, Zhang L, Zheng H, He B, Gu Z (2014) Drug release of pH-sensitive poly(l-aspartate)-b-poly(ethylene glycol) micelles with POSS cores. Polym Chem 5:463–470CrossRefGoogle Scholar
  29. 29.
    Li Y, Xu B, Bai T, Liu W (2015) Co-delivery of doxorubicin and tumor-suppressing p53 gene using a POSS-based star-shaped polymer for cancer therapy. Biomaterials 55:12–23CrossRefGoogle Scholar
  30. 30.
    Wang DK, Varanasi S, Strounina E, Hill DJT, Symons AL, Whittaker AK, Rasoul F (2014) Synthesis and characterization of a POSS-PEG macromonomer and POSS-PEG-PLA hydrogels for periodontal applications. Biomacromolecules 15:666–679CrossRefGoogle Scholar
  31. 31.
    Pramudya I, Rico CG, Lee C, Chung H (2016) POSS-containing bioinspired adhesives with enhanced mechanical and optical properties for biomedical applications. Biomacromolecules 17:3853–3861CrossRefGoogle Scholar
  32. 32.
    Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polym Rev 49:25–63CrossRefGoogle Scholar
  33. 33.
    Fadaie P, Atai M, Imani M, Karkhaneh A, Ghasaban S (2013) Cyanoacrylate-POSS nanocomposites: novel adhesives with improved properties for dental applications. Dent Mater 29:e61–e69CrossRefGoogle Scholar
  34. 34.
    Wamke A, Dopierała K, Prochaska K, Maciejewski H, Biadasz A, Dudkowiak A (2015) Characterization of Langmuir monolayer, Langmuir–Blodgett and Langmuir–Schaefer films formed by POSS compounds. Colloids Surf A Physicochem Eng Asp 464:110–120CrossRefGoogle Scholar
  35. 35.
    Dopierala K, Wamke A, Dutkiewicz M, Maciejewski H, Prochaska K (2014) Interfacial properties of fully condensed functional silsesquioxane: a Langmuir monolayer study. J Phys Chem C 118:24548–24555CrossRefGoogle Scholar
  36. 36.
    Zhang Y, Zhao B, Li L, Nie K, Zheng S (2019) Polyhedral oligomeric silsesquioxane-capped poly(N-vinyl pyrrolidone) amphiphiles: synthesis, self-assembly, and use as porogen of nanoporous poly(vinylidene fluoride). Colloid Polym Sci 297:141–153CrossRefGoogle Scholar
  37. 37.
    Rojewska M, Skrzypiec M, Prochaska K (2017) Surface properties and morphology of mixed POSS-DPPC monolayers at the air/water interface. Colloids Surf B: Biointerfaces 150:334–343CrossRefGoogle Scholar
  38. 38.
    Skrzypiec M, Georgiev GA, Rojewska M, Prochaska K (2017) Interaction of polyhedral oligomeric silsesquioxanes and dipalmitoylphosphatidylcholine at the air/water interface: thermodynamic and rheological study. Biochim Biophys Acta Biomembr 1859:1838–1850CrossRefGoogle Scholar
  39. 39.
    Li Z, Ma X, Guan X, Qiang X, Zang D, Chen F (2017) Aggregation behavior of star-shaped fluoropolymers containing polyhedral oligomeric silsesquioxane (POSS) at the air–water interface. Colloid Polym Sci 295:157–170CrossRefGoogle Scholar
  40. 40.
    Dutkiewicz M, Karasiewicz J, Rojewska M, Skrzypiec M, Dopierała K, Prochaska K, Maciejewski H (2016) Synthesis of an open-cage structure POSS containing various functional groups and their effect on the formation and properties of Langmuir monolayers. Chem Eur J 22:13275–13286CrossRefGoogle Scholar
  41. 41.
    Dopierała K, Maciejewski H, Prochaska K (2016) Interaction of polyhedral oligomeric silsesquioxane containing epoxycyclohexyl groups with cholesterol at the air/water interface. Colloids Surf B: Biointerfaces 140:135–141CrossRefGoogle Scholar
  42. 42.
    Mitsuishi M, Zhao F, Kim Y, Watanabe A, Miyashita T (2008) Preparation of ultrathin silsesquioxane nanofilms via polymer Langmuir - Blodgett films. Chem Mater 20:4310–4316CrossRefGoogle Scholar
  43. 43.
    Paczesny J, Binkiewicz I, Janczuk M, Wybrańska K, Richter Ł, Hołyst R (2015) Langmuir and Langmuir-Blodgett films of unsymmetrical and fully condensed polyhedral oligomeric silsesquioxanes (POSS). J Phys Chem C 119:27007–27017CrossRefGoogle Scholar
  44. 44.
    Xu S, Zhao B, Wei K, Zheng S (2018) Organic–inorganic polyurethanes with double decker silsesquioxanes in the main chains: morphologies, surface hydrophobicity, and shape memory properties. J Polym Sci B Polym Phys 56:893–906CrossRefGoogle Scholar
  45. 45.
    Deng J, Hottle JR, Polidan JT, Kim HJ, Farmer-Creely CE, Viers BD, Esker AR (2004) Polyhedral oligomeric silsesquioxane amphiphiles: isotherm and Brewster angle microscopy studies of trisilanolisobutyl-POSS at the air/water interface. Langmuir 20:109–115CrossRefGoogle Scholar
  46. 46.
    Deng J, Polidan JT, Hottle JR, Farmer-Creely CE, Viers BD, Esker AR (2002) Polyhedral oligomeric silsesquioxanes: a new class of amphiphiles at the air/water interface. J Am Chem Soc 124:15194–15195CrossRefGoogle Scholar
  47. 47.
    Hussain H, Amado E, Kressler J (2011) Functional polyether-based amphiphilic block copolymers synthesized by atom-transfer radical polymerization. Aust J Chem 64:1183–1195CrossRefGoogle Scholar
  48. 48.
    Ullah A, Ullah S, Mahmood N, et al (2019) Effect of polyhedral oligomeric silsesquioxane nanocage on the crystallization behavior of PEG5k - b -P(MA-POSS) diblock copolymers achieved via atom transfer radical polymerization.
  49. 49.
    Tan BH, Hussain H, He CB (2011) Tailoring micelle formation and gelation in (PEG-P(MA-POSS)) amphiphilic hybrid block copolymers. Macromolecules 44:622–631CrossRefGoogle Scholar
  50. 50.
    Hussain H, Tan BH, Seah GL, Liu Y, He CB, Davis TP (2010) Micelle formation and gelation of (PEG-P(MA-POSS)) amphiphilic block copolymers via associative hydrophobic effects. Langmuir 26:11763–11773CrossRefGoogle Scholar
  51. 51.
    Perry MC (1996) Langmuir-Blodgett films: an introduction. Cambridge University Press, CambridgeGoogle Scholar
  52. 52.
    Tsukanova V, Salesse C (2004) On the nature of conformational transition in poly(ethylene glycol) chains grafted onto phospholipid monolayers. J Phys Chem B 108:10754–10764CrossRefGoogle Scholar
  53. 53.
    Gaines GL (1991) Monolayers of polymers. Langmuir 7:834–839CrossRefGoogle Scholar
  54. 54.
    Crisp DJ (1946) Surface films of polymers. Part II. Films of the coherent and semi-crystalline type. J Colloid Sci 1:161–184CrossRefGoogle Scholar
  55. 55.
    Crisp DJ (1946) Surface films of polymers. Part I. Films of the fluid type. J Colloid Sci 1:49–70CrossRefGoogle Scholar
  56. 56.
    Li B, Wu Y, Liu M, Esker AR (2006) Brewster angle microscopy study of poly(ε-caprolactone) crystal growth in Langmuir films at the air/water interface. Langmuir 22:4902–4905CrossRefGoogle Scholar
  57. 57.
    Hasan N, Schwieger C, Tee HT, Wurm FR, Busse K, Kressler J (2018) Crystallization of a polyphosphoester at the air-water interface. Eur Polym J 101:350–357CrossRefGoogle Scholar
  58. 58.
    Hoenig D, Moebius D (1991) Direct visualization of monolayers at the air-water interface by Brewster angle microscopy. J Phys Chem 95:4590–4592CrossRefGoogle Scholar
  59. 59.
    Asada M, Jiang N, Sendogdular L, Sokolov J, Endoh MK, Koga T, Fukuto M, Yang L, Akgun B, Dimitriou M, Satija S (2014) Melt crystallization/dewetting of ultrathin PEO films via carbon dioxide annealing: the effects of polymer adsorbed layers. Soft Matter 10:6392–6403CrossRefGoogle Scholar
  60. 60.
    Joncheray TJ, Denoncourt KM, Mathieu C, Meier MAR, Schubert US, Duran RS (2006) Langmuir and Langmuir-Blodgett films of polye(thylene oxide)-b-poly(ε- caprolactone) star-shaped block copolymers. Langmuir 22:9264–9271CrossRefGoogle Scholar
  61. 61.
    Cohn D, Stern T, Fernanda González M, Epstein J (2002) Biodegradable poly(ethylene oxide)/poly(ε-caprolactone) multiblock copolymers. J Biomed Mater Res 59:273–281CrossRefGoogle Scholar
  62. 62.
    Carroll JB, Waddon AJ, Nakade H, Rotello VM (2003) “Plug and play” polymers. Thermal and x-ray characterizations of noncovalently grafted polyhedral oligomeric silsesquioxane (POSS)-polystyrene nanocomposites. Macromolecules 36:6289–6291CrossRefGoogle Scholar
  63. 63.
    Zheng L, Waddon AJ, Farris RJ, Coughlin EB (2002) X-ray characterizations of polyethylene polyhedral oligomeric silsesquioxane copolymers. Macromolecules 35:2375–2379CrossRefGoogle Scholar
  64. 64.
    Zheng J, Leblanc RM (2007) Advanced chemistry of monolayers at interfaces. In :Imae T (ed) Infrared reflection absorption spectroscopy of monolayers at the air-water interface, Academic Press, London, pp. 247–276Google Scholar
  65. 65.
    Wang H, Coss CS, Mudalige A, Polt RL, Pemberton JE (2013) A PM-IRRAS investigation of monorhamnolipid orientation at the air-water interface. Langmuir 29:4441–4450CrossRefGoogle Scholar
  66. 66.
    Amado E, Kerth A, Blume A, Kressler J (2008) Infrared reflection absorption spectroscopy coupled with Brewster angle microscopy for studying interactions of amphiphilic triblock copolymers with phospholipid monolayers. Langmuir 24:10041–10053CrossRefGoogle Scholar
  67. 67.
    Hussain H, Kerth A, Blume A, Kressler J (2004) Amphiphilic block copolymers of poly(ethylene oxide) and poly(perfluorohexylethyl methacrylate) at the water surface and their penetration into the lipid monolayer. J Phys Chem B 108:9962–9969CrossRefGoogle Scholar
  68. 68.
    Schwieger C, Chen B, Tschierske C, Kressler J, Blume A (2012) Organization of T-shaped facial amphiphiles at the air/water interface studied by infrared reflection absorption spectroscopy. J Phys Chem B 116:12245–12256CrossRefGoogle Scholar
  69. 69.
    Jbeily M, Schwieger C, Kressler J (2017) Mixed Langmuir monolayers of perfluorostearic acid and stearic acid studied by epifluorescence microscopy using fluorinated rhodamines and infrared reflection absorption spectroscopy (IRRAS). Colloids Surf A 529:274–285Google Scholar
  70. 70.
    Flach CR, Gericke A, Mendelsohn R (1997) Quantitative determination of molecular chain tilt angles in monolayer films at the air/water interface: infrared reflection/absorption spectroscopy of behenic acid methyl ester. J Phys Chem B 101:58–65CrossRefGoogle Scholar
  71. 71.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) FTIR study of polycaprolactone chain organization at interfaces. J Colloid Interface Sci 273:381–387CrossRefGoogle Scholar
  72. 72.
    Mao L, Ritcey AM, Desbat B (1996) Evaluation of molecular orientation in a polymeric monolayer at the air−water interface by polarization-modulated infrared spectroscopy. Langmuir 12:4754–4759CrossRefGoogle Scholar
  73. 73.
    Schwieger C, Liu X, Krafft MP (2017) Self-assembled mesoscopic surface domains of fluorocarbon-hydrocarbon diblocks can form at zero surface pressure: tilting of solid-like hydrocarbon moieties compensates for cross-section mismatch with fluorocarbon moieties. Phys Chem Chem Phys 19:23809–23816CrossRefGoogle Scholar
  74. 74.
    Liu W-C, Yang C-C, Chen W-C, Dai BT, Tsai MS (2002) The structural transformation and properties of spin-on poly(silsesquioxane) films by thermal curing. J Non-Cryst Solids 311:233–240CrossRefGoogle Scholar
  75. 75.
    Tegou E, Bellas V, Gogolides E, Argitis P, Eon D, Cartry G, Cardinaud C (2004) Polyhedral oligomeric silsesquioxane (POSS) based resists: material design challenges and lithographic evaluation at 157 nm. Chem Mater 16:2567–2577CrossRefGoogle Scholar
  76. 76.
    Zhu H, Ma Y, Fan Y, Shen J (2001) Fourier transform infrared spectroscopy and oxygen luminescence probing combined study of modified sol–gel derived film. Thin Solid Films 397:95–101CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nazmul Hasan
    • 1
  • Asad Ullah
    • 2
  • Shakir Ullah
    • 2
  • Jörg Kressler
    • 1
  • Hazrat Hussain
    • 2
    Email author
  1. 1.Department of ChemistryMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Department of ChemistryQuaid-i-Azam University IslamabadIslamabadPakistan

Personalised recommendations