Advertisement

Colloid and Polymer Science

, Volume 297, Issue 5, pp 771–779 | Cite as

Banded spherulites and twisting lamellae in poly–ε–caprolactone

  • Wilhelm KossackEmail author
  • Friedrich Kremer
Original Contribution
  • 46 Downloads

Abstract

By crystallization of poly–ε–caprolactone (PCL) at temperatures (55 C ≥ Tc ≥ 50 C) close to the melting point (Tm = 61 C), banded spherulites form. These structures show a periodicity of P = 32 µm as determined by polarized optical microscopy (POM). In weakly-to-non-banded spherulites formed under similar conditions, a less sharp distribution of characteristic length scales is observed, that exhibits the same mean value. Within bright and dark regions of the banded spherulites, the two-dimensional molecular order parameter of different crystal directions of the lamellae is deduced from tightly focused (15 × 50 µm2) polarized infrared-spectroscopy measurements. From the oscillation of the order parameters of the crystalline \(\underline {a}\)-, \(\underline {b}\)-, and \(\underline {c}\)-axes, banding in pure PCL is proven to result from lamellae growing in a helicoidal fashion along the spherulites radius. No deviation of lamellar growth and radius is determined within experimental uncertainty (± 4). Furthermore, spatially averaged IR-microscopy results in the same characteristic polarization dependence in banded and weakly-to-non-banded spherulites. In conjunction with the mentioned characteristic length scales, we conclude that the mechanism, which results in banding, is also active in non-banded spherulites of PCL.

Keywords

Polycaprolactone Polarized Infrared Spectroscopy Polymer Spherulite 

Notes

Acknowledgments

The authors thank the German Science Foundation for the financial support in the framework of the colloborative research center “SFB TRR 102: Polymers under multiple constraints: restricted and controlled molecular order and mobility.” Furthermore, we like to thank Martha Schulz and Prof. Thomas Thurn-Albrecht (University Halle-Wittenberg) for fruitful discussions and help with the interpretation of the results.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Shtukenberg AG, Punin YO, Gujral A, Kahr B (2014) . Angew Chem Int Ed 53(3):672.  https://doi.org/10.1002/anie.201301223 Google Scholar
  2. 2.
    Woo EM, Lugito G (2015) . Eur Polym J 71:27.  https://doi.org/10.1016/j.eurpolymj.2015.07.045 Google Scholar
  3. 3.
    Keith HD, Padden FJ (1959) . J Polym Sci 39(135):101.  https://doi.org/10.1002/pol.1959.1203913509 Google Scholar
  4. 4.
    Keith HD, Padden FJJ (1959) . J Polym Sci 39(135):123.  https://doi.org/10.1002/pol.1959.1203913510 Google Scholar
  5. 5.
    Crist B, Schultz JM (2016) . Prog Polym Sci 56:1.  https://doi.org/10.1016/j.progpolymsci.2015.11.006 Google Scholar
  6. 6.
    Lotz B, Cheng SZD (2005) . Polymer 46(3):577.  https://doi.org/10.1016/j.polymer.2004.07.042 Google Scholar
  7. 7.
    Keller A (1959) . J Polym Sci 39(135):151.  https://doi.org/10.1002/pol.1959.1203913512 Google Scholar
  8. 8.
    Shtukenberg AG, Punin YO, Gunn E, Kahr B (2012) Chem Rev 112(3).  https://doi.org/10.1021/cr200297f
  9. 9.
    Rosenthal M, Anokhin DV, Luchnikov VA, Davies RJ, Riekel C, Burghammer M, Bar G, Ivanov DA (2010) . IOP conference series materials science and engineering 14(1):012014.  https://doi.org/10.1088/1757-899X/14/1/012014 Google Scholar
  10. 10.
    Rosenthal M, Bar G, Burghammer M, Ivanov DA (2011) . Angew Chem Int Ed 50(38):8881.  https://doi.org/10.1002/anie.201102814 Google Scholar
  11. 11.
    Rosenthal M, Hernandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, Burghammer M, Ivanov DA (2013) . Macromol Rapid Commun 34(23-24):1815.  https://doi.org/10.1002/marc.201300713 Google Scholar
  12. 12.
    Xu J, Guo BH, Zhang ZM, Zhou JJ, Jiang Y, Yan S, Li L, Wu Q, Chen GQ, Schultz JM (2004) . Macromolecules 37(11):4118.  https://doi.org/10.1021/ma0499122 Google Scholar
  13. 13.
    Schultz JM (2013) . Macromolecules 46(10):4227.  https://doi.org/10.1021/ma400541j Google Scholar
  14. 14.
    Gunn E, Sours R, Benedict JB, Kahr B (2006) . J Am Chem Soc 128(44):14234.  https://doi.org/10.1021/ja065139+ Google Scholar
  15. 15.
    Bassett DC, Hodge AM (1981) . Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 377(1768):25.  https://doi.org/10.1098/rspa.1981.0113 Google Scholar
  16. 16.
    Bassett DC, Hodge AM (1981) . Proceedings of the Royal Society of London A: Mathematical Physical and Engineering Sciences 377(1768):61.  https://doi.org/10.1098/rspa.1981.0115 Google Scholar
  17. 17.
    Nozue Y, Kurita R, Hirano S, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2003) . Polymer 44(20):6397.  https://doi.org/10.1016/S0032-3861(03)00591-3 Google Scholar
  18. 18.
    Nozue Y, Hirano S, Kurita R, Kawasaki N, Ueno S, Iida A, Nishi T, Amemiya Y (2004) . Polymer 45(25):8299.  https://doi.org/10.1016/j.polymer.2004.09.084 Google Scholar
  19. 19.
    Nozue Y, Shinohara Y, Ogawa Y, Takamizawa T, Sakurai T, Kasahara T, Yamaguchi N, Yagi N, Amemiya Y (2010) . Polymer 51(1):222.  https://doi.org/10.1016/j.polymer.2009.11.031 Google Scholar
  20. 20.
    Tanaka H, Ikeda T, Nishi T (1986) . Appl Phys Lett 48(6):393.  https://doi.org/10.1063/1.96562 Google Scholar
  21. 21.
    Barham PJ, Keller A (1977) . J Mater Sci 12(11):2141.  https://doi.org/10.1007/BF00552234 Google Scholar
  22. 22.
    Li CY, Yan D, Cheng SZD, Bai F, He T, Chien LC, Harris FW, Lotz B (1999) . Macromolecules 32(2):524.  https://doi.org/10.1021/ma981000a Google Scholar
  23. 23.
    Li CY, Cheng SZD, Ge JJ, Bai F, Zhang J, Mann IK, Chien LC, Harris FW, Lotz B (2000) . J Am Chem Soc 122(1):72.  https://doi.org/10.1021/ja993249t Google Scholar
  24. 24.
    Rosenthal M, Portale G, Burghammer M, Bar G, Samulski ET, Ivanov DA (2012) . Macromolecules 45(18):7454.  https://doi.org/10.1021/ma301446t Google Scholar
  25. 25.
    Vaughan AS (1993) . J Mater Sci 28(7):1805.  https://doi.org/10.1007/BF00595749 Google Scholar
  26. 26.
    Ikehara T, Kataoka T (2013) . Sci Rep 3:1444.  https://doi.org/10.1038/srep01444 Google Scholar
  27. 27.
    Chen Z, Majidi C, Srolovitz DJ, Haataja M (2011) . Appl Phys Lett 98(1):011906.  https://doi.org/10.1063/1.3530441 Google Scholar
  28. 28.
    Toda A, Arita T, Hikosaka M, Hobbs JK, Miles MJ (2003) . J Macromol Sci Part B 42(3-4):753.  https://doi.org/10.1081/MB-120021604 Google Scholar
  29. 29.
    Keith HD, Padden FJ (1996) . Macromolecules 29(24):7776.  https://doi.org/10.1021/ma960634j Google Scholar
  30. 30.
    Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA (2014) . Macromolecules 47(23):8295.  https://doi.org/10.1021/ma501733n Google Scholar
  31. 31.
    Cui X, Shtukenberg AG, Freudenthal J, Nichols S, Kahr B (2014) . J Am Chem Soc 136(14):5481.  https://doi.org/10.1021/ja5013382 Google Scholar
  32. 32.
    Wang H, Gan Z, Schultz JM, Yan S (2008) . Polymer 49(9):2342.  https://doi.org/10.1016/j.polymer.2008.02.050 Google Scholar
  33. 33.
    Beekmans LGM, Vancso GJ (2000) . Polymer 41(25):8975.  https://doi.org/10.1016/S0032-3861(00)00240-8 Google Scholar
  34. 34.
    Mullins WW, Sekerka RF (1963) . J Appl Phys 34(2):323.  https://doi.org/10.1063/1.1702607 Google Scholar
  35. 35.
    Langer JS (1980) . Rev Mod Phys 52(1):1.  https://doi.org/10.1103/RevModPhys.52.1 Google Scholar
  36. 36.
    Kajioka H, Hikosaka M, Taguchi K, Toda A (2008) . Polymer 49(6):1685. 10.1016/j.polymer.2008.01.066Google Scholar
  37. 37.
    Kajioka H, Taguchi K, Toda A (2011) . Macromolecules 44(23):9239.  https://doi.org/10.1021/ma201985h Google Scholar
  38. 38.
    Toda A, Okamura M, Taguchi K, Hikosaka M, Kajioka H (2008) . Macromolecules 41(7):2484.  https://doi.org/10.1021/ma702267e Google Scholar
  39. 39.
    Keith HD, Padden FJJ, Russell T (1989) . Macromolecules 22(2):666.  https://doi.org/10.1021/ma00192a027 Google Scholar
  40. 40.
    Fritzsching KJ, Mao K, Schmidt-Rohr K (2017) . Macromolecules 50(4):1521.  https://doi.org/10.1021/acs.macromol.6b02000 Google Scholar
  41. 41.
    Flory PJ (1962) . J Am Chem Soc 84(15):2857.  https://doi.org/10.1021/ja00874a004 Google Scholar
  42. 42.
    Bassett DC, Keller A (1961) . The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics 6(63):345.  https://doi.org/10.1080/14786436108235888 Google Scholar
  43. 43.
    Gautam S, Balijepalli S, Rutledge GC (2000) . Macromolecules 33 (24):9136.  https://doi.org/10.1021/ma0012503 Google Scholar
  44. 44.
    Mareau VH, Prud’homme RE (2005) . Macromolecules 38(2):398.  https://doi.org/10.1021/ma0482359 Google Scholar
  45. 45.
    Duan Y, Jiang Y, Jiang S, Li L, Yan S, Schultz JM (2004) . Macromolecules 37(24):9283.  https://doi.org/10.1021/ma0483165 Google Scholar
  46. 46.
    Ji J, Liao X, Bai J, Luo X, Yang Q, Li G (2015) . Colloid Polym Sci 293(8):2311.  https://doi.org/10.1007/s00396-015-3621-9 Google Scholar
  47. 47.
    Li Y, Huang H, He T, Wang Z (2012) . ACS Macro Letters 1(6):718.  https://doi.org/10.1021/mz300212r Google Scholar
  48. 48.
    Nurkhamidah S, Woo EM (2012) . Colloid Polym Sci 290(3):275.  https://doi.org/10.1007/s00396-011-2544-3 Google Scholar
  49. 49.
    Su CC, Woo EM, Hsieh YT (2013) . Phys Chem Chem Phys 15 (7):2495.  https://doi.org/10.1039/C2CP43523C Google Scholar
  50. 50.
    Woo EM, Wang LY, Nurkhamidah S (2012) . Macromolecules 45(3):1375.  https://doi.org/10.1021/ma202222e Google Scholar
  51. 51.
    Woo EM, Lugito G, Tsai JH, Müller AJ (2016) . Macromolecules 49 (7):2698.  https://doi.org/10.1021/acs.macromol.6b00350 Google Scholar
  52. 52.
    Lugito G, Woo EM (2017) . Macromolecules 50(15):5898.  https://doi.org/10.1021/acs.macromol.7b00838 Google Scholar
  53. 53.
    Wang P, Tian Y, Wang G, Xu Y, Yang B, Lu B, Zhang W, Ji J (2015) . Colloid Polym Sci 293(9):2701.  https://doi.org/10.1007/s00396-015-3690-9 Google Scholar
  54. 54.
    Kaito A, Iwakura Y, Li Y, Shimizu H (2008) . J Polym Sci B Polym Phys 46(13):1376.  https://doi.org/10.1002/polb.21472 Google Scholar
  55. 55.
    Padden FJJ, Keith HD (1966) . J Appl Phys 37(11):4013.  https://doi.org/10.1063/1.1707968 Google Scholar
  56. 56.
    Bassett DC (2003) . J Macromol Sci Part B 42(2):227.  https://doi.org/10.1081/MB-120017116 Google Scholar
  57. 57.
    Hikima Y, Morikawa J, Hashimoto T (2013) . Macromolecules 46(4):1582.  https://doi.org/10.1021/ma302560q Google Scholar
  58. 58.
    Wang M, Vantasin S, Wang J, Sato H, Zhang J, Ozaki Y (2017) . Macromolecules 50(8):3377.  https://doi.org/10.1021/acs.macromol.7b00139 Google Scholar
  59. 59.
    Zhang Y, Leblanc-Boily V, Zhao Y, Prud’homme RE (2005) . Polymer 46(19):8141.  https://doi.org/10.1016/j.polymer.2005.06.114 Google Scholar
  60. 60.
    Zhao Y, Keroack D, Prud’homme R (1999) . Macromolecules 32(4):1218.  https://doi.org/10.1021/ma981416o Google Scholar
  61. 61.
    Kossack W, Schulz M, Thurn-Albrecht T, Reinmuth J, Skokow V, Kremer F (2017) . Soft Matter 13(48):9211.  https://doi.org/10.1039/C7SM01988B Google Scholar
  62. 62.
    Phillips PJ, Rensch GJ, Taylor KD (1987) . J Polym Sci B Polym Phys 25 (8):1725.  https://doi.org/10.1002/polb.1987.090250814 Google Scholar
  63. 63.
    Papadopoulos P, Sölter J., Kremer F (2007) . Eur Phys J E 24(2):193.  https://doi.org/10.1140/epje/i2007-10229-9 Google Scholar
  64. 64.
    Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F (2016) Macromolecules (9)3442.  https://doi.org/10.1021/acs.macromol.6b00473
  65. 65.
    Kossack W, Papadopoulos P, Heinze P, Finkelmann H, Kremer F (2010) . Macromolecules 43 (18):7532.  https://doi.org/10.1021/ma101121f Google Scholar
  66. 66.
    Unger M, Siesler HW (2009) . Appl Spectrosc 63(12):1351.  https://doi.org/10.1366/000370209790109030 Google Scholar
  67. 67.
    Kossack W, Seidlitz A, Thurn-Albrecht T, Kremer F (2017) . Macromolecules 50(3):1056.  https://doi.org/10.1021/acs.macromol.6b02714 Google Scholar
  68. 68.
    Coleman MM, Zarian J (1979) . J Polym Sci Polym Phys Ed 17(5):837.  https://doi.org/10.1002/pol.1979.180170509 Google Scholar
  69. 69.
    Lagaron JM, Dixon NM, Reed W, Pastor JM, Kip BJ (1999) . Polymer 40(10):2569.  https://doi.org/10.1016/S0032-3861(98)00500-X Google Scholar
  70. 70.
    Elzein T, Nasser-Eddine M, Delaite C, Bistac S, Dumas P (2004) . J Colloid Interface Sci 273 (2):381.  https://doi.org/10.1016/j.jcis.2004.02.001 Google Scholar
  71. 71.
    Keroack D, Zhao Y, Prud’homme RE (1999) . Polymer 40(1):243.  https://doi.org/10.1016/S0032-3861(98)00187-6 Google Scholar
  72. 72.
    Noda I, Dowrey AE, Haynes JL, Marcott C (2007). In: Mark JE (ed) Physical properties of polymers handbook. Springer, New York, pp 395–406Google Scholar
  73. 73.
    Krimm S, Liang CY, Sutherland GBBM (1956) . J Chem Phys 25(3):549.  https://doi.org/10.1063/1.1742963 Google Scholar
  74. 74.
    Ajji A, Zhang X, Elkoun S (2006) . Polym Eng Sci 46(9):1182.  https://doi.org/10.1002/pen.20576 Google Scholar
  75. 75.
    Socrates G (2001) Infrared and raman characteristic group frequencies. Tables and charts, 3rd edn. Wiley, New YorkGoogle Scholar
  76. 76.
    Neese F (2012) . Wiley Interdiscip Rev Comput Mol Sci 2(1):73.  https://doi.org/10.1002/wcms.81 Google Scholar
  77. 77.
    Clark T, Chandrasekhar J, Spitznagel GW, RaguéSchleyer PV (1983) . J Comput Chem 4(3):294.  https://doi.org/10.1002/jcc.540040303 Google Scholar
  78. 78.
    Frisch MJ, Pople JA, Binkley JS (1984) . J Chem Phys 80(7):3265.  https://doi.org/10.1063/1.447079 Google Scholar
  79. 79.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) . J Chem Phys 72 (1):650.  https://doi.org/10.1063/1.438955 Google Scholar
  80. 80.
    Price FP (1959) . J Polym Sci 39(135):139.  https://doi.org/10.1002/pol.1959.1203913511 Google Scholar
  81. 81.
    Cole K, Ajji A (2000). In: Ward IM, Coates PD, Dumoulin MM (eds) Solid phase processing of polymers. Progress in polymer processing. Hanser Publishers; Hanser Gardner Publications , Munich, pp 33–84Google Scholar
  82. 82.
    Mark JE (ed) (2009) The polymer data handbook, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  83. 83.
    Khambatta FB, Warner F, Russell T, Stein RS (1976) . J Polym Sci Polym Phys Ed 14(8):1391.  https://doi.org/10.1002/pol.1976.180140805 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Molecular Physics Department, Peter Debye Institut für weiche MaterieUniversity LeipzigLeipzigGermany

Personalised recommendations