The use of glycerol as reactive solvent in the one-pot synthesis of antibacterial hybrid organic–inorganic coatings with photothermal activity

  • Nancy M. Cativa
  • Andrea Y. Mansilla
  • Gustavo F. Arenas
  • Cristina E. Hoppe
  • Ignacio E. dell’ErbaEmail author
Original Contribution


Hybrid organic–inorganic coatings showing photothermal activity and anti-bacterial properties were easily obtained by cross-linking of glycerol in presence of silane-coated silver NPs (Ag NPs). Ag NPs functionalized with aminosilane groups were prepared by reduction of AgNO3 with 3-aminopropyl trimethoxysilane (APTMS), by following a previously published procedure (dell’Erba et al., J Mater Sci 51:3817–3823, 2016), using glycerol as both reducing agent and solvent. Thermal treatment of these dispersions induced reaction between hydroxyl from glycerol and methoxysilane groups, producing a chemically resistant, cross-linked nanostructured network with covalently bonded Ag NPs. Control on the degree of glycerol release during synthesis enabled producing, in just one step, a cross-linked material with variable concentrations of Ag NPs. Tuning the annealing temperature and composition of the reactive samples allowed controlling the final concentration of NPs in the solid samples and the physicochemical properties of the coatings. Obtained materials showed an excellent chemical stability, bactericidal effect against Escherichia coli, and a significant photothermal effect. The simplicity of the procedure, the use of glycerol as monomer and solvent, and the high versatility of the strategy that enables the inclusion of different metals in a cross-linked matrix, make the synthetic strategy very promising for the development of materials with technological applications.

Graphical abstract


Silver nanoparticles Photothermal effect Glycerol Coatings Bactericidal nanocomposites 


Author contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Funding information

This work was financially supported by the National Research Council (CONICET), the University of Mar del Plata, and the National Agency for the Promotion of Science and Technology (ANPCyT), Argentina (PICT15-1433).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interest.


  1. 1.
    Sun Y, Zhang Y, Shi Y, Xiao X, Dai H, Hu J, Ni P, Li Z (2013) Facile preparation of silver nanoparticle films as an efficient surface-enhanced Raman scattering substrate. Appl Surf Sci 283:52–57. CrossRefGoogle Scholar
  2. 2.
    Soliveri G, Ardizzone S, Yüksel S, Cialla-May D, Popp J, Schubert US, Hoeppener S (2016) Microwave-assisted silver nanoparticle film formation for SERS applications. J Phys Chem C 120:1237–1244. CrossRefGoogle Scholar
  3. 3.
    Lu Y, Liu GL, Lee LP (2005) High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced Raman scattering substrate. Nano Lett 5:5–9. CrossRefGoogle Scholar
  4. 4.
    Teerasong S, Sani M, Numsawat P, Martchoo R, Chompoosor A, Nacapricha D (2015) A silver nanoparticle thin film modified glass substrate as a colourimetric sensor for hydrogen peroxide. J Exp Nanosci 10:1327–1335. CrossRefGoogle Scholar
  5. 5.
    Chen R, Morris HR, Whitmore PM (2013) Fast detection of hydrogen sulfide gas in the ppmv range with silver nanoparticle films at ambient conditions. Sensors Actuators B Chem 186:431–438. CrossRefGoogle Scholar
  6. 6.
    James JZ, Lucas D, Koshland CP (2012) Gold nanoparticle films as sensitive and reusable elemental mercury sensors. Environ Sci Technol 46:9557–9562. CrossRefGoogle Scholar
  7. 7.
    Pfeiffer TV, Ortiz-Gonzalez J, Santbergen R, Tan H, Ott AS, Zeman M, Smets AHM (2014) Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia 60:3–12. CrossRefGoogle Scholar
  8. 8.
    Sun C, Su J, Wang X (2015) A design of thin film silicon solar cells based on silver nanoparticle arrays. Plasmonics 10:633–641. CrossRefGoogle Scholar
  9. 9.
    Dehnavi AS, Aroujalian A, Raisi A, Fazel S (2013) Preparation and characterization of polyethylene/silver nanocomposite films with antibacterial activity. J Appl Polym Sci 127:1180–1190. CrossRefGoogle Scholar
  10. 10.
    Galya T, Sedlařík V, Kuřitka I et al (2008) Antibacterial poly(vinyl alcohol) film containing silver nanoparticles: preparation and characterization. J Appl Polym Sci 110:3178–3185. CrossRefGoogle Scholar
  11. 11.
    Kanmani P, Rhim J-W (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169. CrossRefGoogle Scholar
  12. 12.
    Adepu S, Khandelwal M (2018) Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained release. J Mater Sci 53:1596–1609. CrossRefGoogle Scholar
  13. 13.
    Sun B, Sun S, Li T, Zhang W (2007) Preparation and antibacterial activities of Ag-doped SiO2–TiO2 composite films by liquid phase deposition (LPD) method. J Mater Sci 42:10085–10089. CrossRefGoogle Scholar
  14. 14.
    Choi B, Lee H-H, Jin S, Chun S, Kim SH (2007) Characterization of the optical properties of silver nanoparticle films. Nanotechnology 18:075706. CrossRefGoogle Scholar
  15. 15.
    Budhiraja N, Sharma A, Dahiya S, Parmar R, Vidyadharan V (2013) Synthesis and optical characteristics of silver nanoparticles on different substrates. Int Lett Chem Phys Astron 19:80–88. CrossRefGoogle Scholar
  16. 16.
    Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38. CrossRefGoogle Scholar
  17. 17.
    Yue K, Nan J, Zhang X, Tang J, Zhang X (2016) Photothermal effects of gold nanoparticles induced by light emitting diodes. Appl Therm Eng 99:1093–1100. CrossRefGoogle Scholar
  18. 18.
    Zvyagina AI, Ezhov AA, Ivanov VK, Arslanov VV, Kalinina MA (2015) Highly tunable plasmonic assemblies of gold nanoparticles: in-plane manipulation of plasmon coupling with nanometer precision. J Mater Chem C 3:11801–11805. CrossRefGoogle Scholar
  19. 19.
    Qin Z, Wang Y, Randrianalisoa J, Raeesi V, Chan WCW, Lipiński W, Bischof JC (2016) Quantitative comparison of photothermal heat generation between gold nanospheres and nanorods. Sci Rep 6:29836. CrossRefGoogle Scholar
  20. 20.
    Altuna FI, Antonacci J, Arenas GF, Pettarin V, Hoppe CE, Williams RJJ (2016) Photothermal triggering of self-healing processes applied to the reparation of bio-based polymer networks. Mater Res Exp 3:045003. CrossRefGoogle Scholar
  21. 21.
    Leonardi AB, Puig J, Antonacci J, Arenas GF, Zucchi IA, Hoppe CE, Reven L, Zhu L, Toader V, Williams RJJ (2015) Remote activation by green-light irradiation of shape memory epoxies containing gold nanoparticles. Eur Polym J 71:451–460. CrossRefGoogle Scholar
  22. 22.
    Chang C, Yang C, Liu Y, Tao P, Song C, Shang W, Wu J, Deng T (2016) Efficient solar-thermal energy harvest driven by interfacial plasmonic heating-assisted evaporation. ACS Appl Mater Interfaces 8:23412–23418. CrossRefGoogle Scholar
  23. 23.
    Liu Z, Yang Z, Huang X, Xuan C, Xie J, Fu H, Wu Q, Zhang J, Zhou X, Liu Y (2017) High-absorption recyclable photothermal membranes used in a bionic system for high-efficiency solar desalination via enhanced localized heating. J Mater Chem A 5:20044–20052. CrossRefGoogle Scholar
  24. 24.
    Kim SH, Kang EB, Jeong CJ, Sharker SM, in I, Park SY (2015) Light controllable surface coating for effective photothermal killing of bacteria. ACS Appl Mater Interfaces 7:15600–15606. CrossRefGoogle Scholar
  25. 25.
    Jiang G, Chen L, Zhang S, Huang H (2018) SuperhydrophobicSiC/CNTs coatings with photothermal deicing and passive anti-icing properties. ACS Appl Mater Interfaces 10:36505–36511. CrossRefGoogle Scholar
  26. 26.
    Yin X, Zhang Y, Wang D, Liu Z, Liu Y, Pei X, Yu B, Zhou F (2015) Integration of self-lubrication and near-infrared photothermogenesis for excellent anti-icing/deicing performance. Adv Funct Mater 25:4237–4245. CrossRefGoogle Scholar
  27. 27.
    Dash S, de Ruiter J, Varanasi KK (2018) Photothermal trap utilizing solar illumination for ice mitigation. Sci Adv 4:eaat0127. CrossRefGoogle Scholar
  28. 28.
    Zhang D, Toh GW, Lin H, Chen Y (2012) In situ synthesis of silver nanoparticles on silk fabric with PNP for antibacterial finishing. J Mater Sci 47:5721–5728. CrossRefGoogle Scholar
  29. 29.
    Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. CrossRefGoogle Scholar
  30. 30.
    Duncan TV (2011) Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J Colloid Interface Sci 363:1–24. CrossRefGoogle Scholar
  31. 31.
    Adawi HI, Newbold MA, Reed JM, Vance ME, Feitshans IL, Bickford LR, Lewinski NA (2018) Nano-enabled personal care products: current developments in consumer safety. NanoImpact 11:170–179. CrossRefGoogle Scholar
  32. 32.
    Boyle D, Goss GG (2018) Effects of silver nanoparticles in early life-stage zebrafish are associated with particle dissolution and the toxicity of soluble silver. NanoImpact 12:1–8. CrossRefGoogle Scholar
  33. 33.
    Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18:3352–3357. CrossRefGoogle Scholar
  34. 34.
    Perkas N, Amirian G, Applerot G, Efendiev E, Kaganovskii Y, Ghule AV, Chen BJ, Ling YC, Gedanken A (2008) Depositing silver nanoparticles on/in a glass slide by the sonochemical method. Nanotechnology 19:435604. CrossRefGoogle Scholar
  35. 35.
    Karakouz T, Maoz BM, Lando G, Vaskevich A, Rubinstein I (2011) Stabilization of gold nanoparticle films on glass by thermal embedding. ACS Appl Mater Interfaces 3:978–987. CrossRefGoogle Scholar
  36. 36.
    Hu M, Yamaguchi Y, Okubo T (2005) Self-assembly of water-dispersed gold nanoparticles stabilized by a thiolated glycol derivative. J Nanopart Res 7:187–193. CrossRefGoogle Scholar
  37. 37.
    dell’Erba IE, Hoppe CE, Williams RJJ (2012) Films of covalently bonded gold nanoparticles synthesized by a sol–gel process. J Nanopart Res 14:1098–1105. CrossRefGoogle Scholar
  38. 38.
    Liu Y, Plate P, Hinrichs V, Köhler T, Song M, Manley P, Schmid M, Bartsch P, Fiechter S, Lux-Steiner MC, Fischer CH (2017) Size- and density-controlled deposition of Ag nanoparticle films by a novel low-temperature spray chemical vapour deposition method—research into mechanism, particle growth and optical simulation. J Nanopart Res 19:141. CrossRefGoogle Scholar
  39. 39.
    Rhim J-W, Wang L-F, Lee Y, Hong S-I (2014) Preparation and characterization of bio-nanocomposite films of agar and silver nanoparticles: laser ablation method. Carbohydr Polym 103:456–465. CrossRefGoogle Scholar
  40. 40.
    Prevo BG, Fuller JC, Velev OD (2005) Rapid deposition of gold nanoparticle films with controlled thickness and structure by convective assembly. Chem Mater 17:28–35. CrossRefGoogle Scholar
  41. 41.
    Schneid AC, Pereira MB, Horowitz F et al (2015) Silver nanoparticle thin films deposited on glass surface using an ionic silsesquioxane as stabilizer and as crosslinking agent. J Braz Chem Soc 26:1004–1012. Google Scholar
  42. 42.
    Toor A, So H, Pisano AP (2017) Improved dielectric properties of polyvinylidene fluoride nanocomposite embedded with poly(vinylpyrrolidone)-coated gold nanoparticles. ACS Appl Mater Interfaces 9:6369–6375. CrossRefGoogle Scholar
  43. 43.
    Xu Y, Konrad MP, Trotter JL, McCoy CP, Bell SEJ (2017) Rapid one-pot preparation of large freestanding nanoparticle-polymer films. Small 13:1602163. CrossRefGoogle Scholar
  44. 44.
    Ma Z, Jiang Y, Xiao H, Jiang B, Zhang H, Peng M, Dong G, Yu X, Yang J (2018) Sol-gel preparation of Ag-silica nanocomposite with high electrical conductivity. Appl Surf Sci 436:732–738. CrossRefGoogle Scholar
  45. 45.
    Pileni M (ed) (2005) Nanocrystals forming mesoscopic structures. Wiley-VCH, WeinheimGoogle Scholar
  46. 46.
    Hood M, Mari M, Muñoz-Espí R (2014) Synthetic strategies in the preparation of polymer/inorganic hybrid nanoparticles. Materials 7:4057–4087. CrossRefGoogle Scholar
  47. 47.
    Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110. CrossRefGoogle Scholar
  48. 48.
    Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structure–property relationships in polymer nanocomposites. Polymer 51:3321–3343. CrossRefGoogle Scholar
  49. 49.
    Krishnamoorti R (2007) Strategies for dispersing nanoparticles in polymers. MRS Bull 32:341–347. CrossRefGoogle Scholar
  50. 50.
    Zhang H, Han J, Yang B (2010) Structural fabrication and functional modulation of nanoparticle-polymer composites. Adv Funct Mater 20:1533–1550. CrossRefGoogle Scholar
  51. 51.
    Pagliaro M (2017) Glycerol. In: Glycerol. Elsevier, pp 109–132Google Scholar
  52. 52.
    Kong PS, Aroua MK, Daud WMAW (2016) Conversion of crude and pure glycerol into derivatives: a feasibility evaluation. Renew Sust Energ Rev 63:533–555. CrossRefGoogle Scholar
  53. 53.
    Hejna A, Kosmela P, Formela K, Piszczyk Ł, Haponiuk JT (2016) Potential applications of crude glycerol in polymer technology–current state and perspectives. Renew Sust Energ Rev 66:449–475. CrossRefGoogle Scholar
  54. 54.
    Monteiro MR, Kugelmeier CL, Pinheiro RS, Batalha MO, da Silva César A (2018) Glycerol from biodiesel production: technological paths for sustainability. Renew Sust Energ Rev 88:109–122. CrossRefGoogle Scholar
  55. 55.
    Leoneti AB, Aragão-Leoneti V, de Oliveira SVWB (2012) Glycerol as a by-product of biodiesel production in Brazil: alternatives for the use of unrefined glycerol. Renew Energy 45:138–145. CrossRefGoogle Scholar
  56. 56.
    dell’Erba IE, Mansilla AY, Hoppe CE, Williams RJJ (2016) Synthesis and characterization of an antibacterial powder based on the covalent bonding of aminosilane-stabilized silver nanoparticles to a colloidal silica. J Mater Sci 51:3817–3823. CrossRefGoogle Scholar
  57. 57.
    Lin-Vien D, Colthup NB, Fateley WG, Grasselli JG (1991) The handbook of infrared and raman characteristic frequencies of organic molecules. Academic Press, BostonGoogle Scholar
  58. 58.
    Socrates G (2001) Infrared and Raman characteristic group frequencies: tables and charts3rd edn. Wiley, ChichesterGoogle Scholar
  59. 59.
    Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Membr Sci 331:50–56. CrossRefGoogle Scholar
  60. 60.
    Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–982. CrossRefGoogle Scholar
  61. 61.
    Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11:102–113. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Materials Science and Technology (INTEMA)University of Mar del Plata and National Research Council (CONICET)Mar del PlataArgentina
  2. 2.Biological Research Institute (IIB)University of Mar del Plata and National Research Council (CONICET)Mar del PlataArgentina
  3. 3.LASER Laboratory – ICYTEUniversity of Mar del Plata and National Research Council (CONICET)Mar del PlataArgentina

Personalised recommendations