Colloid and Polymer Science

, Volume 297, Issue 4, pp 603–611 | Cite as

Luminescent core@shell nanoparticles functionalized with PEG for biological applications

  • Shivani Bharti
  • Gurvir Kaur
  • Shikha Gupta
  • S. K. TripathiEmail author
Original Contribution


In this manuscript, synthesis of TGA (thioglycolic acid) capped core@shell CdSe@CdS nanoparticles (NPs) has been done using chemical route. PEG-diamine has been used to functionalize spherical core@shell CdSe@CdS NPs by carbodiimide chemistry, which is very simple and effective method to make stable bond between NH2 group and COOH group. Optical properties include UV-Visible absorption and fluorescence emission that show the higher polydispersity and enhanced emission intensity of CdSe@CdS-PEG NPs in comparison to CdSe@CdS core@shell NPs. FT-IR results of CdSe@CdS-PEG NPs indicate the intermolecular interaction between PEG-diamine and TGA capped CdSe@CdS core@shell NPs. The emission intensity of CdSe@CdS and CdSe@CdS-PEG NPs is highest when dispersed in pH 6 medium which is low acidic in nature. Therefore, these colloidal NPs can be used for applications in the pH range (6–8), due to their stability and higher fluorescence emission in this pH range.


Colloidal NPs Luminescence Buffer solutions Crosslinker Dispersity 



Miss. Shivani Bharti is thankful to Department of Science and Technology (DST), India, for providing the INSPIRE fellowship. We are also thankful to Dr. Samrat Mukhopadhyay, Department of Chemical Sciences, IISER Mohali for providing FluoroMax®-4 Spectrofluorometer facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    William WY, Chang E, Drezek R, Colvin VL (2006) Water-soluble quantum dots for biomedical applications. Biochem Biophys Res Commun 348(3):781–786CrossRefGoogle Scholar
  2. 2.
    Farka Z, Juřík T, Kovář D, Trnková L, Skládal P (2017) Nanoparticle-based immunochemical biosensors and assays: recent advances and challenges. Chem Rev 117(15):9973–10042CrossRefGoogle Scholar
  3. 3.
    Hansen JA, Wang J, Kawde AN, Xiang Y, Gothelf KV, Collins G (2006) Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J Am Chem Soc 128(7):2228–2229CrossRefGoogle Scholar
  4. 4.
    Matea CT, Mocan T, Tabaran F, Pop T, Mosteanu O, Puia C, Iancu C, Mocan L (2017) Quantum dots in imaging, drug delivery and sensor applications. Int J Nanomedicine 12:5421–5431CrossRefGoogle Scholar
  5. 5.
    Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641CrossRefGoogle Scholar
  6. 6.
    Purcell-Milton F, Visheratina AK, Kuznetsova VA, Ryan A, Orlova AO, Gun’ko YK (2017) Impact of Shell thickness on photoluminescence and optical activity in chiral CdSe/CdS Core/Shell quantum dots. ACS Nano 11(9):9207–9214CrossRefGoogle Scholar
  7. 7.
    Khandhar AP, Keselman P, Kemp SJ, Ferguson RM, Goodwill PW, Conolly SM, Krishnan KM (2017) Evaluation of PEG-coated iron oxide nanoparticles as blood pool tracers for preclinical magnetic particle imaging. Nanoscale 9(3):1299–1306CrossRefGoogle Scholar
  8. 8.
    Ramasamy S, Samathanam B, Reuther H, Adyanpuram MNMS, Enoch IVMV, Potzger K (2018) Molecular encapsulator on the surface of magnetic nanoparticles. Controlled drug release from calcium ferrite/Cyclodextrin–tethered polymer hybrid. Colloids Surf B: Biointerfaces 161:347–355CrossRefGoogle Scholar
  9. 9.
    Rasheed PA, Sandhyarani N (2017) Electrochemical DNA sensors based on the use of gold nanoparticles: a review on recent developments. Microchim Acta 184:981–1000CrossRefGoogle Scholar
  10. 10.
    Guichard MJ, Leal T, Vanbever R (2017) PEGylation, an approach for improving the pulmonary delivery of biopharmaceuticals. Curr Opin Colloid Interface Sci 31:43–50CrossRefGoogle Scholar
  11. 11.
    Thorek DL, Elias ER, Tsourkas A (2009) Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry. Mol Imaging 8(4):221–229CrossRefGoogle Scholar
  12. 12.
    Kaur G, Tripathi SK (2014) Size tuning of MAA capped CdSe and CdSe/CdS quantum dots and their stability in different pH environments. Mater Chem Phys 143:514–523CrossRefGoogle Scholar
  13. 13.
    Sharma AB, Sharma SK, Sharma M, Pandey RK, Reddy DS (2009) Structural and optical investigation of semiconductor CdSe/CdS core–shell quantum dot thin films. Spectrochim Acta A Mol Biomol Spectrosc 72(2):285–290CrossRefGoogle Scholar
  14. 14.
    Bansal KK, Kakde D, Purdie L, Irvine DJ, Howdle SM, Mantovania G, Alexander C (2015) New biomaterials from renewable resources –amphiphilic block copolymers from δ-decalactone. Polym Chem 6:7196–7210CrossRefGoogle Scholar
  15. 15.
    Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119(30):7019–7029CrossRefGoogle Scholar
  16. 16.
    Tripathi SK, Sharma M (2013) Synthesis and optical study of green light emitting polymer coated CdSe/ZnSe core/shell nanocrystals. Mater Res Bull 48(5):1837–1844CrossRefGoogle Scholar
  17. 17.
    Saran AD, Mehra A, Bellare JR (2012) Superposition of quantum confinement energy (SQCE) model for estimating shell thickness in core–shell quantum dots: validation and comparison. J Colloid Interface Sci 378(1):21–29CrossRefGoogle Scholar
  18. 18.
    Song X, Li L, Qian H, Fang N, Ren J (2006) Highly efficient size separation of CdTe quantum dots by capillary gel electrophoresis using polymer solution as sieving medium. Electrophoresis 27(7):1341–1346CrossRefGoogle Scholar
  19. 19.
    Hao E, Sun H, Zhou Z, Liu J, Yang B, Shen J (1999) Synthesis and optical properties of CdSe and CdSe/CdS nanoparticles. Chem Mater 11(11):3096–3102CrossRefGoogle Scholar
  20. 20.
    Singh V, Chauhan P (2009) Synthesis and structural properties of wurtzite type CdS nanoparticles. Chalcogenide Lett 6(8):421–426Google Scholar
  21. 21.
    Schärtl W (2010) Current directions in core–shell nanoparticle design. Nanoscale 2(6):829–843CrossRefGoogle Scholar
  22. 22.
    Zhang P, Han H (2012) Compact PEGylated polymer-caged quantum dots with improved stability. Colloids Surf A Physicochem Eng Asp 402:72–79CrossRefGoogle Scholar
  23. 23.
    Zheng J, Petty JT, Dickson RM (2003) High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 125(26):7780–7781CrossRefGoogle Scholar
  24. 24.
    Chen X, Lou Y, Samia AC, Burda C (2003) Coherency strain effects on the optical response of core/shell heteronanostructures. Nano Lett 3(6):799–803CrossRefGoogle Scholar
  25. 25.
    Parani S, Tsolekile N, Pandian K, Oluwafemi OS (2017) Thiolated selenium as a new precursor for the aqueous synthesis of CdSe/CdS core/shell quantum dots. J Mater Sci Mater Electron 28:11151–11162CrossRefGoogle Scholar
  26. 26.
    Koneswaran M, Narayanaswamy R (2009) Mercaptoacetic acid capped CdS quantum dots as fluorescence single shot probe for mercury (II). Sensors Actuators B Chem 139(1):91–96CrossRefGoogle Scholar
  27. 27.
    Shameli K, Ahmad MB, Jazayeri SD, Sedaghat S, Shabanzadeh P, Jahangirian H, Mahdavi M, Abdollahi Y (2012) Synthesis and characterization of polyethylene glycol mediated silver nanoparticles by the green method. Int J Mol Sci 13:6639–6650CrossRefGoogle Scholar
  28. 28.
    Li S, Zhao J, Zhang Z, Zhang J, Yang W (2014) Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Adv 4:23720–23729CrossRefGoogle Scholar
  29. 29.
    Selim KK, Xing ZC, Choi MJ, Chang Y, Guo H, Kang IK (2011) Reduced cytotoxicity of insulin-immobilized CdS quantum dots using PEG as a spacer. Nanoscale Res Lett 6(1):528CrossRefGoogle Scholar
  30. 30.
    Besteman K, Lee JO, Wiertz FG, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 3(6):727–730CrossRefGoogle Scholar
  31. 31.
    Sastry M, Mayya KS, Bandyopadhyay K (1997) pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf A Physicochem Eng Asp 127(1):221–228CrossRefGoogle Scholar
  32. 32.
    Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3):507–517CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shivani Bharti
    • 1
  • Gurvir Kaur
    • 2
  • Shikha Gupta
    • 3
  • S. K. Tripathi
    • 1
    Email author
  1. 1.Centre of Advanced Study in Physics, Department of PhysicsPanjab UniversityChandigarhIndia
  2. 2.Sri Guru Gobind Singh CollegeChandigarhIndia
  3. 3.Goswami Ganesh Dutta Sanatan Dharma CollegeChandigarhIndia

Personalised recommendations