Advertisement

Colloid and Polymer Science

, Volume 297, Issue 4, pp 557–569 | Cite as

Characterization of PMMA-b-PDMAEMA aggregates in aqueous solutions

  • G. K. V. Saraiva
  • V. V. de Souza
  • L. Coutinho de Oliveira
  • M. L. C. Noronha
  • J. C. Masini
  • H. Chaimovich
  • R. K. Salinas
  • F. H. FlorenzanoEmail author
  • I. M. CuccoviaEmail author
Original Contribution
  • 123 Downloads

Abstract

Diblock amphiphilic copolymers form aggregates in some solvents. Such aggregates exhibit different morphologies, depending mainly on the polar/apolar block ratios. Aggregation of copolymers with polar block excess leads to micelle-like aggregates, known as polymeric micelles, which can be used as vehicles for drug and gene delivery, water decontamination, and catalysis. Here, we synthesized by RAFT polymerization three different polymers namely [dimethyl 2-(aminoethyl) methacrylate] (PDMAEMA), poly (methyl methacrylate) (PMMA) copolymers, and PDMAEMA-block-PMMA and characterized their aggregates by NMR spectroscopy and pH titrations. We investigated correlations between their chemical structure, aggregation behavior, protonation degree, and chain conformation in the corona. Decreased amine protonation in the copolymers reduced the electrostatic repulsion, and the apparent pKa of the amino groups approached that of isolated amine. These effects increased compactness and sizes of the polymers and their aggregates at higher pH as reflected by the increased NMR line widths.

Keywords

Copolymers Polymer solutions Polymer synthesis Responsive systems Spectroscopy Magnetic resonance: NMR/ESR 

Notes

Acknowledgments

IMC, HC, and RKS are CNPq research scholars. GKVS acknowledges the Projeto Biocomputacional/CAPES (proc. no. 23038.004630/2014-35) and CNPq (proc. 457733/2014-4).

Funding information

FAPESP (grant number 2013/08166-5 and 2016/07490-1). IMC has been supported by the INCT-FCx (Instituto Nacional de Ciência e Tecnologia de Fluidos Complexos (CNPq/CAPES/FINEP/FAPESP) and NAP-FCx (Núcleo de Apoio à Pesquisa de Fluidos Complexos da Universidade de São Paulo).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4482_MOESM1_ESM.doc (76 kb)
ESM 1 (DOC 76 kb)

References

  1. 1.
    Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28:1107–1170CrossRefGoogle Scholar
  2. 2.
    Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30:267–277CrossRefGoogle Scholar
  3. 3.
    Nagarajan R (2015) “Non-equilibrium” block copolymer micelles with glassy cores: a predictive approach based on a theory of equilibrium micelles. J Colloid Interface Sci 449:416–427CrossRefGoogle Scholar
  4. 4.
    Smart T, Lomas H, Massignani M, Flores-Merino MV, Perez LR, Battaglia G (2008) Block copolymer nanostructures. Nano Today 3:38–46CrossRefGoogle Scholar
  5. 5.
    Ling P, Xu W, Zhang T (2013) Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv:1–15Google Scholar
  6. 6.
    Beija M, Salvayre R, Lauth-de Viguerie N, Marty JD (2012) Colloidal systems for drug delivery: from design to therapy. Trends Biotechnol 30:485–496CrossRefGoogle Scholar
  7. 7.
    Guo X, Huang L (2012) Recent advances in nonviral vectors for gene delivery. Acc Chem Res 45:971–979CrossRefGoogle Scholar
  8. 8.
    Huang LQ, Yuan SJ, Lv L, Tan GQ, Liang B, Pehkonen SO (2013) Poly(methacrylic acid)-grafted chitosan microspheres via surface-initiated ATRP for enhanced removal of cd(II) ions from aqueous solution. J Colloid Interface Sci 405:171–182CrossRefGoogle Scholar
  9. 9.
    Ge Z, Xie D, Chen D, Jiang X, Zhang Y, Liu H, Liu S (2007) Stimuli-responsive double hydrophilic block copolymer micelles with switchable catalytic activity. Macromolecules 40:3538–3546CrossRefGoogle Scholar
  10. 10.
    Braunecker WA, Matyjaszewski K (2008) Controlled/living radical polymerization: features, developments, and perspectives (vol 32, pg 93, 2007). Prog Polym Sci 33:165–165CrossRefGoogle Scholar
  11. 11.
    Feng HB, Lu XY, Wang WY, Kang NG, Mays JW (2017) Block copolymers: synthesis, self-assembly, and applications. Polymers 9(10):494–525Google Scholar
  12. 12.
    Bettencourt A, Almeida AJ (2012) Poly(methyl methacrylate) particulate carriers in drug delivery. J Microencapsul 29:353–367CrossRefGoogle Scholar
  13. 13.
    Lu Y, Park K (2013) Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm 453:198–214CrossRefGoogle Scholar
  14. 14.
    Nicolai T, Colombani O, Chassenieux C (2010) Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter 6:3111–3118CrossRefGoogle Scholar
  15. 15.
    Agut W, Brûlet A, Schatz C, Taton D, Lecommandoux S (2010) pH and temperature responsive polymeric micelles and polymersomes by self-assembly of poly[2-(dimethylamino)ethyl methacrylate]-b-poly(glutamic acid) double hydrophilic block copolymers. Langmuir 26:10546–10554CrossRefGoogle Scholar
  16. 16.
    Dai S, Ravi P, Tam KC (2008) pH-responsive polymers: synthesis, properties, and applications. Soft Matter 4:435–449CrossRefGoogle Scholar
  17. 17.
    Jochum FD, Theato P (2013) Temperature- and light-responsive smart polymer materials. Chem Soc Rev 42:7468–7483CrossRefGoogle Scholar
  18. 18.
    de Souza JCP, Naves AF, Florenzano FH (2012) Specific thermoresponsiveness of PMMA-block-PDMAEMA to selected ions and other factors in aqueous solution. Colloid Polym Sci 290:1285–1291CrossRefGoogle Scholar
  19. 19.
    Huang Y, Yong P, Chen Y, Gao Y, Xu W, Lv Y, Yang L, Reis RL, Pirraco RP, Chen J (2017) Micellization and gelatinization in aqueous media of pH- and thermo-responsive amphiphilic ABC (PMMA82-b-PDMAEMA150-b-PNIPAM65) triblock copolymer synthesized by consecutive RAFT polymerization. RSC Adv 7:28711–28722CrossRefGoogle Scholar
  20. 20.
    Rodríguez-Hernández J, Chécot F, Gnanou Y, Lecommandoux S (2005) Toward ‘smart’ nano-objects by self-assembly of block copolymers in solution. Prog Polym Sci 30:691–724CrossRefGoogle Scholar
  21. 21.
    Baussard J-F, Habib-Jiwan J-L, Laschewsky A, Mertoglu M, Storsberg J (2004) New chain transfer agents for reversible addition-fragmentation chain transfer (RAFT) polymerization in aqueous solution. Polymer 45:3615–3626CrossRefGoogle Scholar
  22. 22.
    de Souza VV, de Carvalho Noronha ML, Alves Almeida FL, Ribeiro Prado CA, Doriguetto AC, Florenzano FH (2011) CMC of PMMA-block-PDMAEMA measured by NPN fluorescence. Polym Bull 67:875–884CrossRefGoogle Scholar
  23. 23.
    Vranken WF, Boucher W, Stevens TJ, Fogh RH, Pajon A, Llinas P, Ulrich EL, Markley JL, Ionides J, Laue ED (2005) The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins Struct Funct Bioinf 59:687–696CrossRefGoogle Scholar
  24. 24.
    Shen JN, Ye YF, Zeng GN, Qiu JH (2011) Preparation and characterization of PMMA-b-PDMAEMA/polysulfone composite membranes by RAFT polymerization and their permeation performance of carbon dioxide. Advanced Materials Research 284–286:1717–1723Google Scholar
  25. 25.
    Zhao Y, Guo K, Wang C, Wang L (2010) Effect of inclusion complexation with Cyclodextrin on the cloud point of poly(2-(dimethylamino)ethyl methacrylate) solution. Langmuir 26:8966–8970CrossRefGoogle Scholar
  26. 26.
    Saitoh T, Matsushima S, Hiraide M (2004) Aerosol-OT–γ-alumina admicelles for the concentration of hydrophobic organic compounds in water. J Chromatogr A 1040:185–191CrossRefGoogle Scholar
  27. 27.
    Chatterjee U, Jewrajka SK, Mandal BM (2005) The amphiphilic block copolymers of 2-(dimethylamino) ethyl methacrylate and methyl methacrylate: synthesis by atom transfer radical polymerization and solution properties. Polymer 46:10699–10708CrossRefGoogle Scholar
  28. 28.
    Xiao G, Hu Z, Zeng G, Wang Y, Huang Y, Hong X, Xia B, Zhang G (2012) Effect of hydrophilic chain length on the aqueous solution behavior of block amphiphilic copolymers PMMA-b-PDMAEMA. J Appl Polym Sci 124:202–208CrossRefGoogle Scholar
  29. 29.
    van de Wetering P ME, Schuurmans-Nieuwenbroek NM, van Steenbergen MJ, Hennink WE (1999) Structure-activity relationships of water-soluble cationic methacrylate/methacrylamide polymers for nonviral gene delivery. Bioconjug Chem 10:589–597CrossRefGoogle Scholar
  30. 30.
    Israelachvili J (2011) Intermolecular and surface forces. Elsevier Inc, AmsterdamGoogle Scholar
  31. 31.
    Eastoe J (2005) Surfactant chemistry. Wuhan University Press, WuhanGoogle Scholar
  32. 32.
    Barbieri BW, Strauss UP (1985) Effect of alkyl group size on the cooperativity in conformational transitions of hydrophobic polyacids. Macromolecules 18:411–414CrossRefGoogle Scholar
  33. 33.
    Strauss UP, Barbieri BW (1982) Estimation of the cooperative unit size in conformational transitions of hydrophobic polyacids. Macromolecules 15:1347–1349CrossRefGoogle Scholar
  34. 34.
    Lee H, Son SH, Sharma R, Won Y-Y (2011) A discussion of the pH-dependent protonation behaviors of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) and poly(ethylenimine-ran-2-ethyl-2-oxazoline) (P(EI-r-EOz)). J Phys Chem B 115:844–860CrossRefGoogle Scholar
  35. 35.
    Manning GS (1979) Counterion binding in polyelectrolyte theory. Acc Chem Res 12:443–449CrossRefGoogle Scholar
  36. 36.
    Quina F, Chaimovich H (1979) Ion-exchange in micellar solutions .1. Conceptual-framework for ion-exchange in micellar solutions. J Phys Chem 83:1844–1850CrossRefGoogle Scholar
  37. 37.
    Přádný M, Ševčík S (1987) Precursors of hydrophilic polymers, 7. Potentiometric properties and structure of copolymers of 2-dimethylaminoethyl methacrylate. Die Makromol Chem 188:227–238CrossRefGoogle Scholar
  38. 38.
    Laaser JE, Jiang Y, Sprouse D, Reineke TM, Lodge TP (2015) pH- and ionic-strength-induced contraction of polybasic micelles in buffered aqueous solutions. Macromolecules 48:2677–2685CrossRefGoogle Scholar
  39. 39.
    McKernan BA, Manning GS, Romsted LS (2003) Estimating concentrations of condensed counterions around a polyelectrolyte by chemical trapping. Conducting Polymers And Polymer Electrolytes: From Biology To Photovoltaics, pp. 184–199Google Scholar
  40. 40.
    Borukhov I, Andelman D, Borrega R, Cloitre M, Leibler L, Orland H (2000) Polyelectrolyte titration: theory and experiment. J Phys Chem B 104:11027–11034CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Bioquímica, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  2. 2.INRS-Institut Armand-FrappierLavalCanada
  3. 3.Instituto de Ciências ExatasUniversidade Federal de AlfenasAlfenasBrazil
  4. 4.Centro Universitário de ItajubáItajubáBrazil
  5. 5.Departamento de Química Fundamental, Instituto de QuímicaUniversidade de São PauloSão PauloBrazil
  6. 6.Departamento de Engenharia de Materiais, Escola de Engenharia de LorenaUniversidade de São PauloLorenaBrazil

Personalised recommendations