Advertisement

Surface decorating of CH3NH3PbBr3 nanoparticles with chemically adsorbed porphyrin

  • Pengfei Wu
  • Ruimin Zhu
  • Heyuan Liu
  • Baohua Zhao
  • Yanli Chen
  • Xiyou LiEmail author
Original Contribution
  • 21 Downloads

Abstract

An organolead halide (CH3NH3PbBr3) nanoparticle was modified successfully with a porphyrin (POR) bearing an -NH3+ head group. The nanoparticles are homogeneous with high crystallinity. The photoluminescence of CH3NH3PbBr3 is quenched completely by the chemically adsorbed POR molecules. The efficient energy transfer from CH3NH3PbBr3 to POR is responsible for the fluorescence quenching. The modified nanoparticles can be dispersed in organic solvents and the resulting dispersion remains stable for several days. This result provides a new way to tune the photophysical properties of organolead halide CH3NH3PbBr3 nanoparticles.

Graphical abstract

The organolead halide CH3NH3PbBr3 nanoparticle is prepared successfully by modifying a porphyrin (POR) bearing an -NH3+ head group as the capping ligand. The photoluminescence of perovskite is quenched completely by the chemically adsorbed POR molecules which have confirmed that the POR molecules are anchored on the surface of CH3NH3PbBr3 nanoparticle. The result shows that the quenching is caused by the process of energy transfer from CH3NH3PbBr3 nanoparticle to POR, which is beneficial to study surface engineering in organometallic halide perovskite materials.

Keywords

CH3NH3PbBr3 Porphyrin Fluorescence quenching Perovskite Surface engineering 

Notes

Funding information

This work was financially supported by the Natural Science Foundation of Shandong Province (ZR2017MB006) and Major Program of Shandong Province Natural Science Foundation (ZR2017ZB0315). Li X would also like to thank the Taishan Scholar Program of Shandong Province for the financial support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2019_4479_MOESM1_ESM.doc (849 kb)
ESM 1 (DOC 849 kb)

References

  1. 1.
    Correabaena JP, Abate A, Saliba M, Tress W, Jacobsson TJ, Grätzel M, Hagfeldt A (2017) The rapid evolution of highly efficient perovskite solar cells. Energy Environ Sci 10 (3)Google Scholar
  2. 2.
    Even J, Pedesseau L, Katan C, Kepenekian M, Lauret JS, Sapori D, Deleporte E (2015) Solid-state physics perspective on hybrid perovskite semiconductors. J Phys Chem 119:10161–10177Google Scholar
  3. 3.
    Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131(17):6050–6051CrossRefGoogle Scholar
  4. 4.
    Saliba M, Correa-Baena JP, Graetzel M, Hagfeldt A, Abate A (2017) Perovskite solar cells from the atomic to the film level. Angew Chem Int EdGoogle Scholar
  5. 5.
    Yusoff AR, Nazeeruddin MK (2016) Organohalide lead perovskites for photovoltaic applications. J Phys Chem Lett 7(5):851–866CrossRefGoogle Scholar
  6. 6.
    Colella S, Mazzeo M, Rizzo A, Gigli G, Listorti A (2016) The bright side of perovskites. J Phys Chem Lett 7(21):4322–4334CrossRefGoogle Scholar
  7. 7.
    Zhang F, Zhong H, Chen C, Wu XG, Hu X, Huang H, Han J, Zou B, Dong Y (2015) Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, cl) quantum dots: potential alternatives for display technology. ACS Nano 9(4):4533–4542CrossRefGoogle Scholar
  8. 8.
    Ball JM, Stranks SD, Hörantner MT, Hüttner S, Zhang W, Crossland EJW, Ramirez I, Riede M, Johnston MB, Friend RH (2015) Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ Sci 8(2):602–609CrossRefGoogle Scholar
  9. 9.
    Sun S, Salim T, Mathews N, Duchamp M, Boothroyd C, Xing G, Sum TC, Lam YM (2013) The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ Sci 7(1):399–407CrossRefGoogle Scholar
  10. 10.
    Dong Q, Fang Y, Shao Y, Mulligan P, Qiu J, Cao L, Huang J (2015) Solar cells. Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225):967–970CrossRefGoogle Scholar
  11. 11.
    Zhang F, Yang B, Mao X, Yang R, Jiang L, Li Y, Xiong J, Yang Y, He R, Deng W (2017) Perovskite CH3NH3PbI3-xBrx single crystals with charge-carrier lifetimes exceeding 260 μs. ACS Appl Mater Interfaces 9(17):14827–14832CrossRefGoogle Scholar
  12. 12.
    Jeon NJ, Na H, Jung EH, Yang T-Y, Lee YG, Kim G, Shin H-W, Il Seok S, Lee J, Seo J (2018) A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat Energy 3:682–689CrossRefGoogle Scholar
  13. 13.
    Li J, Bade SGR, Shan X, Yu Z (2015) Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater 27(35):5196–5202CrossRefGoogle Scholar
  14. 14.
    Maculan G, Sheikh AD, Abdelhady AL, Saidaminov MI, Haque MA, Murali B, Alarousu E, Mohammed OF, Wu T, Bakr OM (2015) CH3NH3PbCl3 single crystals: inverse temperature crystallization and visible-blind UV-photodetector. J Phys Chem Lett 6(19):3781–3786CrossRefGoogle Scholar
  15. 15.
    Fu X, Jiao S, Dong N, Lian G, Zhao T, Lv S, Wang Q, Cui D (2018) A CH3NH3PbI3 film for a room-temperature NO2 gas sensor with quick response and high selectivity. RSC Adv 8(1):390–395CrossRefGoogle Scholar
  16. 16.
    Cho N, Li F, Turedi B, Sinatra L, Sarmah SP, Parida MR, Saidaminov MI, Murali B, Burlakov VM, Goriely A (2016) Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films. Nat Commun 7:13407CrossRefGoogle Scholar
  17. 17.
    Xing G, Kumar MH, Chong WK, Liu X, Cai Y, Ding H, Asta M, Grätzel M, Mhaisalkar S, Mathews N (2016) Solution-processed tin-based perovskite for near-infrared lasing. Adv Mater 28(37):8191–8196CrossRefGoogle Scholar
  18. 18.
    Schmidt LC, Pertegás A, Gonzálezcarrero S, Malinkiewicz O, Agouram S, Espallargas GM, Bolink HJ, Galian RE, Pérezprieto J (2014) Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. J Am Chem Soc 136(3):850–853CrossRefGoogle Scholar
  19. 19.
    Ryu S (2014) Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ Sci 7(8):2614–2618CrossRefGoogle Scholar
  20. 20.
    Heo JH, Im SH (2015) CH3NH3PbBr3-CH3NH3PbI3 perovskite-perovskite tandem solar cells with exceeding 2.2 V open circuit voltage. Adv Mater 28(25):5121–5125CrossRefGoogle Scholar
  21. 21.
    Aharon S, Etgar L (2016) Two dimensional organo-metal halide perovskite nanorods with tunable optical properties. Nano Lett 16(5):3230–3235CrossRefGoogle Scholar
  22. 22.
    Sun S, Yuan D, Xu Y, Wang A, Deng Z (2016) Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10(3):3648–3657CrossRefGoogle Scholar
  23. 23.
    Zhu R, Gao C, Sun T, Li S, Sun D, Li X (2016) Surface decorating of CH3NH3PbBr3 nanoparticles with the chemically adsorbed perylenetetracarboxylic diimide. Langmuir 32(13):3294–3299CrossRefGoogle Scholar
  24. 24.
    Paolesse R, Nardis S, Monti D, Stefanelli M, Di NC (2016) Porphyrinoids for chemical sensor applications. Chem Rev 117(4):2517–2583CrossRefGoogle Scholar
  25. 25.
    Bhupathiraju NVSDK, Rizvi W, Batteas JD, Drain CM (2016) ChemInform abstract: fluorinated porphyrinoids as efficient platforms for new photonic materials, sensors, and therapeutics. Org Biomol Chem 14(2):389–408CrossRefGoogle Scholar
  26. 26.
    Ishihara S, Labuta J, Van RW, Ishikawa D, Minami K, Hill JP, Ariga K (2014) Porphyrin-based sensor nanoarchitectonics in diverse physical detection modes. Phys Chem Chem Phys 16(21):9713–9746CrossRefGoogle Scholar
  27. 27.
    Kollár M, Luca Ć, Dil JH, Weber A, Muff S, Ronnow HM, Náfrádi B, Monnier BP, Luterbacher JS, Forró L (2017) Clean, cleaved surfaces of the photovoltaic perovskite. Sci Rep 7(1):695CrossRefGoogle Scholar
  28. 28.
    Osvald Knop REW, White MA, Stanley Cameron T, Van Oort MJM (1990) Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can J Chem 68(3):412–422CrossRefGoogle Scholar
  29. 29.
    Sichert JA, Yu T, Mutz N, Vollmer M, Fischer S, Milowska KZ, Cortadella RG, Nickel B, Cardenasdaw C, Stolarczyk JK (2015) Quantum size effect in organometal halide perovskite nanoplatelets. Nano Lett 15(10):6521–6527CrossRefGoogle Scholar
  30. 30.
    De Wolf S, Holovsky J, Moon SJ, Loper P, Niesen B, Ledinsky M, Haug FJ, Yum JH, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5(6):1035–1039CrossRefGoogle Scholar
  31. 31.
    Kim HS, Lee CR, Im JH, Lee KB, Moehl T, Marchioro A, Moon SJ, Humphry-Baker R, Yum JH, Moser JE, Gratzel M, Park NG (2012) Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2:591CrossRefGoogle Scholar
  32. 32.
    Paul AK, Karunakaran SC, Joseph J, Ramaiah D (2015) Amino acid-porphyrin conjugates: synthesis and study of their photophysical and metal ion recognition properties. Photochem Photobiol 91(6):1348–1355CrossRefGoogle Scholar
  33. 33.
    Chaudhri N, Sawhney N, Madhusudhan B, Raghav A, Sankar M, Satapathi S (2017) Effect of functional groups on sensitization of dye-sensitized solar cells (DSSCs) using free base porphyrins. J Porphyrins Phthalocyanines 21(3):1–9CrossRefGoogle Scholar
  34. 34.
    Mandal AK, Taniguchi M, Diers JR, Niedzwiedzki DM, Kirmaier C, Lindsey JS, Bocian DF, Holten D (2016) Photophysical properties and electronic structure of porphyrins bearing zero to four meso-phenyl substituents: new insights into seemingly well understood tetrapyrroles. J Phys Chem A 120(49):9719–9731CrossRefGoogle Scholar
  35. 35.
    Zhu F, Men L, Guo Y, Zhu Q, Bhattacharjee U, Goodwin PM, Petrich JW, Smith EA, Vela J (2015) Shape evolution and single particle luminescence of organometal halide perovskite nanocrystals. ACS Nano 9(3):2948–2959CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Pengfei Wu
    • 1
  • Ruimin Zhu
    • 2
  • Heyuan Liu
    • 1
  • Baohua Zhao
    • 1
  • Yanli Chen
    • 1
  • Xiyou Li
    • 1
    Email author
  1. 1.School of Material Science and Engineering, College of ScienceChina University of Petroleum (East China)QingdaoChina
  2. 2.Department of ChemistryShandong UniversityJinanChina

Personalised recommendations