Surface properties of the composite films based on poly(vinyl alcohol) and nanodiamonds as studied by wetting techniques and autoradiography

  • Oxana A. SobolevaEmail author
  • Maria G. Chernysheva
  • Ivan Yu Myasnikov
  • Elena V. Porodenko
  • Gennadii A. Badun
Invited Article


Surface concentration of oxidized nanodiamonds (NDs) and NDs modified with oleylamine in NDs–poly(vinyl alcohol) composite films has been determined by autoradiography using tritium-labeled NDs. It has been demonstrated that oxidized NDs are distributed uniformly in the composite films, and their surface concentration is the same at both sides of the film. After modification with oleylamine, ND concentration at the bottom side of the film exceeds that at the top side approximately tenfold. Zisman critical surface tension of the composite films as well as polar and non-polar contributions to the surface tension has been found. It has been shown that surface tension is determined by the polymer, and the addition of NDs does not affect its value.

Graphical abstract


Poly(vinyl alcohol) Nanodiamonds Composite film Autoradiography Critical surface tension 



The authors thank Dr. Vladimir Sergeyev (Lomonosov Moscow State University) for helpful discussions.


This study was financially supported by the Russian Foundation for Basic Research (project no. 16-08-00780). Thermogravimetric analysis was performed using the equipment made available by M.V. Lomonosov Moscow State University Program of Development.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Neitzel I, Mochalin VN, Niu J, Guadra J, Kontsos A, Palmese GR, Gorotsi Y (2012) Maximizing Young’s modulus of aminated nanodiamond-epoxy composites measured in compression. Polymer 53:5965–5971. CrossRefGoogle Scholar
  2. 2.
    Gerasin VA, Antipov EM, Karbushev VV, Kulichikhin VG, Karpacheva GP, Talrose RV, Kudryavtsev YV (2013) New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russ Chem Rev 82(4):303–332. CrossRefGoogle Scholar
  3. 3.
    Kurkin TS, Ozerin AN, Kechek’yan AS, Gritsenko OT, Ozerina LA, Alkhanishvili GG, Sushchev VG, Dolmatov VY (2010) The structure and properties of polymer composite fibers based on poly(vinyl alcohol) and nanodiamond of detonation synthesis. Nanotechnologies in Russia 5(5–6):340–351. CrossRefGoogle Scholar
  4. 4.
    Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 144:4415–4421. CrossRefGoogle Scholar
  5. 5.
    Soboleva OA, Porodenko EV, Sergeyev VG (2017) Oxidized nanodiamond batches as filler for composite films based on polyvinyl alcohol. Russ J Gen Chem 87(7):1584–1590. CrossRefGoogle Scholar
  6. 6.
    Kurkin TS, Tikunova EP, Yablokova MY, Kechek’yan AS, Beshenko MA, Dolmatov VY, Ozerin AN (2014) Effect of detonation-synthesized nanodiamond powder on the adhesive strength of a polymer fiber to the epoxy binder. Doklady Chem 457:118–121. CrossRefGoogle Scholar
  7. 7.
    Korobko AP, Milekhin YM, Krasheninnikov SV, Shishov NI, Levakova IV, Chvalun SN, Ozerina LA, Bestuzheva TA, Drozd SN, Butenko EA (2004) Nanocomposites based on plasticized poly(ester urethane) and ultrafine diamonds. Vysokomolekularnye Soedineniya. Ser.A Ser.B Ser.C - Kratkie Soobshcheniya 46(9):1558–1569Google Scholar
  8. 8.
    Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Uspechi Khimii 70(7):706–708Google Scholar
  9. 9.
    Shakun A, Vuorinen J, Hoikkanen M, Poikelispaa M, Das A (2014) Hard nanodiamonds in soft rubbers: past, present and future – a review. Compos Part A 64:45–69. CrossRefGoogle Scholar
  10. 10.
    Mochalin VN, Gorotsi Y (2015) Nanodiamond-polymer composites. Diam Relat Mater 58:161–171. CrossRefGoogle Scholar
  11. 11.
    Jee A, Lee M (2011) Photomechanical effects in a dye-doped polymer nanocomposite. J Nanosci Nanotechnol 11(7):6459–6462. CrossRefPubMedGoogle Scholar
  12. 12.
    Jee A-Y, Lee M (2011) Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Curr Appl Phys 11(5):1183–1187. CrossRefGoogle Scholar
  13. 13.
    Zhang O, Mochalin VN, Neitzel I, Hazeli K, Niu J, Kontsos A, Zhou JG, Leikes PI, Gorotsi Y (2012) Mechanical and biomineralization of multifunctional nanodiamond-PLLA composites for bone tissue engineering. Biomaterials 33:5067–5075. CrossRefPubMedGoogle Scholar
  14. 14.
    Owens DK, Wendt RC (1969) Estimation of the surface free energy of polymers. J Appl Polym Sci 13:1741–1747CrossRefGoogle Scholar
  15. 15.
    Kwok DY, Neumann AW (1999) Contact angle measurement and contact angle interpretation. Adv Colloid Interface Sci 81:167–249CrossRefGoogle Scholar
  16. 16.
    Dil EJ, Favis BD (2015) Localization of micro- and nano-silica particles in heterophase poly(lactic acid)/poly(butylenes adipate-co-terephthalate) blends. Polymer 76:295–306. CrossRefGoogle Scholar
  17. 17.
    Shahbazi M, Rajabzaden G, Sitiideh S (2017) Functional characterization, wettability properties and cytotoxic effect of starch film incorporated with multi-walled and hydroxylated multi-walled carbon nanotubes. Int J Biol Macromol 104:597–605. CrossRefPubMedGoogle Scholar
  18. 18.
    Soboleva OA, Myasnikov IY, Dolmatov VY, Chernysheva MG, Badun GA, Karpushkin EA (2018) Transfer of nanodiamonds from the aqueous phase to the organic phase in the presence of oleylamine. Diam Relat Mater 87:115–121. CrossRefGoogle Scholar
  19. 19.
    Li CC, Huang CL (2010) Preparation of clear colloidal solutions of detonation nanodiamond in organic solvents. Colloids Surf A 353:52–56. CrossRefGoogle Scholar
  20. 20.
    Xu X, Wang X, Yang L, Yu H, Chang H (2015) Structure and surface characterization of co-adsorbed layer of oleic acid and octadecylamine on detonation nanodiamond. Diam Relat Mater 60:50–59. CrossRefGoogle Scholar
  21. 21.
    Chernysheva MG, Myasnikov IY, Badun GA, Matorin DN, Gabbasova DT, Konstantinov AI, Korobkov VI, Kulikova NA (2018) Humic substances alter the uptake and toxicity of nanodiamonds in wheat seedlings. J Soils Sediments 4:1335–1346. CrossRefGoogle Scholar
  22. 22.
    Kulikova NA, Abroskin DP, Badun GA, Chernysheva MG, Korobkov VI, Beer AS, Tsvetkova EA, Senik SV, Klein OI, Perminova IV (2016) Label distribution in tissues of wheat seedlings cultivated with tritium-labeled leonardite humic acid. Sci Rep 6.
  23. 23.
    Soboleva OA, Korobkov VI, Dolzhikova VD, Badun GA, Abramov AA (1998) The application of the autoradiography method for studying the surfactant distribution on solid surface. Colloid J 60:765–769Google Scholar
  24. 24.
    Soboleva OA, Badun GA, Korobkov VI, Ivanova NI (2007) Selective wetting in tatradecyltrimethylammonium bromide aqueous solution – p-xylene – solid system. Colloid J 69(4):506–513. CrossRefGoogle Scholar
  25. 25.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gorotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powers by selective oxidation in air. J Am Chem Soc 128:11635–11642. CrossRefPubMedGoogle Scholar
  26. 26.
    Badun GA, Chernycheva MG, Yakovlev RY, Leonidov NB, Semenenko MN, Lisichkin GV (2014) A novel approach radiolabeling detonation nanodiamonds through the tritium thermal activation method. Radiochim Acta 102:941–946. CrossRefGoogle Scholar
  27. 27.
    Feinendegen LE (1967) Tritium labeled molecules in biology and medicine. Academic Press, New York and LondonGoogle Scholar
  28. 28.
    Kolotov VP, Dogadkin NN, Korobkov VI, Grozdov DS (2008) Determination of platinum-palladium micro inclusions in polymetallic ores by means of digital gamma-activation autoradiography. J Radioanal Nucl Chem 278:739–743. CrossRefGoogle Scholar
  29. 29.
    Grozdov DS (2012) Digital gamma-activation autoradiography for analysis under conditions of nonuniform field of bremsstrahlung of microtron. Cand. Chem. thesis. MoscowGoogle Scholar
  30. 30.
    Khalilnezhad P, Sajjadi SA, Zebarjad SM (2014) Effect of nanodiamond surface functionalization using oleylamine on the scratch behaviour of polyacrylic/nanodiamond nanocomposite. Diam Relat Mater 45:7–11. CrossRefGoogle Scholar
  31. 31.
    Yadav V, Sharma PP, Rajput A, Kulshrestha V (2018) Thermal and mechanical analysis of PVA/sulfonated carbon nanotubes composite. AIP Conf Proc 1942:050077–1–050077–4. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Oxana A. Soboleva
    • 1
    Email author
  • Maria G. Chernysheva
    • 1
  • Ivan Yu Myasnikov
    • 2
  • Elena V. Porodenko
    • 1
  • Gennadii A. Badun
    • 1
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Vernadsky Institute of Geochemistry and Analytical ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations