Advertisement

Self-assembly and rheological behavior of oleic acid-based pseudo-tetrameric surfactants

  • Chaowang Li
  • Danhua Xie
  • Xiaomei Pei
  • Binglei Song
  • Zhenggang Cui
Original Contribution
  • 9 Downloads

Abstract

Traditional tetrameric surfactants exhibit a variety of self-assembled aggregation behaviors and excellent rheological properties. In recent years, the use of non-covalent interactions to construct pseudo-oligomeric surfactants has attracted extensive attention. We constructed dynamic oleic acid-based pseudo-tetrameric surfactants through electrostatic interaction between tetrameric quaternary ammonium salts (3-n-3, n = 2, 3, 6, 8) and the environmentally friendly sodium oleate. The series of surfactants showed higher viscoelasticity with increasing concentration, which is similar to the traditional tetrameric surfactants. With the addition of the tetrameric salts, the zero-shear viscosity of the original sodium oleate solutions increased by a factor of more than 80,000. The rheological properties can be flexibly modulated by controlling the middle spacer length of the tetrameric quaternary ammonium salt. The wormlike micelles of dynamic oleic acid-based pseudo-tetrameric surfactants will expand the potential applications of ionic liquids in home care products, oil field stimulation fluids, and nanobiotechnology.

Keywords

Oleic acid Pseudo-tetrameric surfactant Viscoelasticity Non-covalent interactions 

Notes

Funding information

Support from the National Natural Science Foundation of China (21203078, 31300486) and the Open Research Fund of Fujian Provincial Key Laboratory of Featured Materials in Biochemical Industry, Ningde Normal University (FJKL_FMBI201703), is gratefully acknowledged.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Zana R (2002) Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: a review. Adv Colloid Interfac 97(1–3):205–253CrossRefGoogle Scholar
  2. 2.
    Hou YB, Han YC, Deng ML, Xiang JF, Wang YL (2010) Aggregation behavior of a tetrameric cationic surfactant in aqueous solution. Langmuir 26(1):28–33CrossRefGoogle Scholar
  3. 3.
    Cates ME (1987) Reptation of living polymers: dynamics of entangled polymers in the presence of reversible chain-scission reactions. Macromolecules 20(9):2289–2296CrossRefGoogle Scholar
  4. 4.
    Zana R, Talmon Y (1993) Dependence of aggregate morphology on structure of dimeric surfactants. Nature 362(6417):228–230CrossRefGoogle Scholar
  5. 5.
    Zhang YM, An PY, Qin AN, Li J, Lu XD, Liu XF (2016) Self-assembly and rheological behaviors of dynamic pseudo-oligomeric surfactant. Colloid Polym Sci 294:1743–1754CrossRefGoogle Scholar
  6. 6.
    Danino D, Talmon Y, Levy H, Beinert G, Zana R (1995) Branched threadlike micelles in an aqueous solution of a trimeric surfactant. Science 269(5229):1420–1421CrossRefGoogle Scholar
  7. 7.
    Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3(8):956–970CrossRefGoogle Scholar
  8. 8.
    Fan YX, Hou YB, Xiang JF, Yu DF, Wu CX, Tian MZ, Han YC, Wang YL (2011) Synthesis and aggregation behavior of a hexameric quaternary ammonium surfactant. Langmuir 27(17):10570–10579CrossRefGoogle Scholar
  9. 9.
    Hou YB, Cao MW, Deng ML, Wang YL (2008) Highly-ordered selective self-assembly of a trimeric cationic surfactant on a mica surface. Langmuir 24:10572–10574CrossRefGoogle Scholar
  10. 10.
    Wang C, Wang Z, Zhang X (2012) Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. Accounts Chem Res 45:608–618CrossRefGoogle Scholar
  11. 11.
    Zhang X, Wang C (2011) Supramolecular amphiphiles. Chem Soc Rev 40:94–101CrossRefGoogle Scholar
  12. 12.
    Zhang Y, Feng Y, Wang Y, Li X (2013) CO2-switchable viscoelastic fluids based on a pseudogemini surfactant. Langmuir 29:4187–4192CrossRefGoogle Scholar
  13. 13.
    Tang Y, Liu Z, Zhu L, Han Y, Wang Y (2015) Aggregation behavior of sodium lauryl ether sulfate with a positively bicharged organic salt and effects of the mixture on fluorescent properties of conjugated polyelectrolytes. Langmuir 31:2104–2111CrossRefGoogle Scholar
  14. 14.
    Sun N, Shi L, Lu F, Xie S, Zheng L (2014) Spontaneous vesicle phase formation by pseudogemini surfactants in aqueous solutions. Soft Matter 10:5463–5471CrossRefGoogle Scholar
  15. 15.
    Xie DH, Zhao JX, You Y (2014) The strong influence of alkyl tail length on the aggregation and viscoelasticity of carboxylate gemini surfactants with a p-dibenzenediol spacer in aqueous solution. Colloid Polym Sci 292(11):2785–2793CrossRefGoogle Scholar
  16. 16.
    Matsumoto T, Heiuchi T, Horie K (1989) Morphology and viscoelasticity of bilayer aqueous colloids of low-molecular and macromolecular amphiphiles. Colloid Polym Sci 267(1):71–79CrossRefGoogle Scholar
  17. 17.
    Zhao JX, Yang DP, You Y (2014) Effect of bolaform counterions on the adsorption of sodium dodecyl sulfonate at the air/water Interface. J Surfactants Deterg 17(4):583–589CrossRefGoogle Scholar
  18. 18.
    Shrestha RG, Rodriguez-Abreu C, Aramaki K (2009) Wormlike micelles in mixed amino acid surfactant/nonionic surfactant aqueous systems and the effect of added electrolytes. J Oleo Sci 58(5):243–254CrossRefPubMedGoogle Scholar
  19. 19.
    Kunieda H, Rodriguez C, Tanaka Y, Kabir MH, Ishitobi M (2004) Effects of added nonionic surfactant and inorganic salt on the rheology of sugar surfactant and CTAB aqueous solutions. Colloid Surface B 38(3–4):127–130CrossRefGoogle Scholar
  20. 20.
    Shrestha RG, Shrestha LK, Aramaki K (2007) Formation of wormlike micelle in a mixed amino-acid based anionic surfactant and cationic surfactant systems. J Colloid Interf Sci 311(1):276–284CrossRefGoogle Scholar
  21. 21.
    Pei XM, Zhao JX, Ye YZ, Wei XL (2011) Wormlike micelles and gels reinforced by hydrogen bonding in aqueous cationic gemini surfactant systems. Soft Matter 7(6):2953–2960CrossRefGoogle Scholar
  22. 22.
    Alami E, Beinert G, Marie P, Zana R (1993) Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants. 3. Behavior at the air-water-interface. Langmuir 9:1465–1467CrossRefGoogle Scholar
  23. 23.
    Jiang R, Zhao JX, Hu XM, Pei XM, Zhang LX (2009) Rich aggregate morphologies induced by organic salts in aqueous solutions of a cationic gemini surfactant with a short spacer. J Colloid Interf Sci 340:98–103CrossRefGoogle Scholar
  24. 24.
    Pei XM, Zhao JX, Li EJ (2013) Micellar growth: role of molecular geometry and intermolecular hydrogen bonding. Colloid Surface A 420:59–63CrossRefGoogle Scholar
  25. 25.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday T 2(72):1525–1568CrossRefGoogle Scholar
  26. 26.
    Acharya DP, Kunieda HB, Shiba Y, Aratani K (2004) Phase and rheological behavior of novel gemini-type surfactant systems. J Phys Chem B 108(5):1790–1797CrossRefGoogle Scholar
  27. 27.
    Chen F, Wu Y, Wang M, Zha R (2015) Self-assembly networks of wormlike micelles and hydrophobically modified polyacrylamide with high performance in fracturing fluid application. Colloid Polym Sci 293(3):687–697CrossRefGoogle Scholar
  28. 28.
    Granek R, Cates ME (1992) Stress relaxation in living polymers: results from a poisson renewal model. J Chem Phys 96(6):4758–4767CrossRefGoogle Scholar
  29. 29.
    Kern F, Lequeux F, Zana R, Candau SJ (1994) Dynamic properties of salt-free viscoelastic micellar solutions. Langmuir 10(6):1714–1723CrossRefGoogle Scholar
  30. 30.
    Oda R, Narayanan J, Hassan PA, Manohar C, Salkar RA, Kern F, Candau SJ (1998) Effect of the lipophilicity of the counterion on the viscoelasticity of micellar solutions of cationic surfactants. Langmuir 14(16):4364–4372CrossRefGoogle Scholar
  31. 31.
    Rodriguez C, Acharya DP, Hattori K, Sakai T, Kunieda H (2003) Phase and rheological behavior of surfactant/novel alkanolamide/water systems. Langmuir 19(21):8692–8696CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Chaowang Li
    • 1
  • Danhua Xie
    • 2
  • Xiaomei Pei
    • 1
  • Binglei Song
    • 1
  • Zhenggang Cui
    • 1
  1. 1.School of Chemical & Materials Engineering, Key Laboratory of Food Colloids and Biotechnology Ministry of EducationJiangnan UniversityWuxiPeople’s Republic of China
  2. 2.Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Fujian Provincial Key Laboratory of Featured Materials in Biochemical IndustryNingde Normal UniversityNingdePeople’s Republic of China

Personalised recommendations