Advertisement

Preparation of gold nanoparticles via direct interaction of tetrachloroauric acid with DNA

  • Evgeny A. Karpushkin
  • Yury D. Aleksandrov
  • Anna V. Gibalova
  • Artem M. Abakumov
  • Larisa I. Lopatina
  • Vladimir G. Sergeyev
Invited Article
  • 43 Downloads

Abstract

Reduction of chloroauric acid with DNA in neutral aqueous medium has been systematically studied by means of electron absorption spectroscopy and transmission electron microscopy. The reduction has afforded ultrasmall gold nanoparticles (diameter of 1 nm), which exhibit excellent stability and perfect catalytic properties in the model reaction of p-nitrophenol reduction.

Keywords

Gold DNA Catalysis Nanoparticles Colloidal stability 

Notes

Acknowledgments

Authors are grateful to Mariia A. Lukianova for constructive criticism of the manuscript.

Funding information

This work was financially supported by the Russian Foundation for Basic Research (project no. 17-08-01087).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4448_MOESM1_ESM.docx (8.5 mb)
ESM 1 (DOCX 8747 kb)

References

  1. 1.
    Carabineiro SAC (2012) Colloidal gold. In: Ray PC (ed) Colloids: classification. Properties and Applications. Nova Science Publishers, Inc., Hauppauge, pp 1–24Google Scholar
  2. 2.
    Faraday M (1857) X. The Bakerian lecture. Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147:145–181.  https://doi.org/10.1098/rstl.1857.0011 CrossRefGoogle Scholar
  3. 3.
    Zhou W, Gao X, Liu D, Chen X (2015) Gold nanoparticles for in vitro diagnostics. Chem Rev 115:10575–10636.  https://doi.org/10.1021/acs.chemrev.5b00100 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 120:4691–4716.  https://doi.org/10.1021/acs.jpcc.5b11232 CrossRefGoogle Scholar
  5. 5.
    Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101.  https://doi.org/10.1016/j.addr.2015.12.012 CrossRefPubMedGoogle Scholar
  6. 6.
    Cole LE, Ross RD, Tilley JMR, Vargo-Gogola T, Roeder RK (2015) Gold nanoparticles as contrast agents in X-ray imaging and computed tomography. Nanomedicine 10:321–341.  https://doi.org/10.2217/nnm.14.171 CrossRefPubMedGoogle Scholar
  7. 7.
    Mitsudome T, Kaneda K (2013) Gold nanoparticle catalysts for selective hydrogenations. Green Chem 15:2636–2654.  https://doi.org/10.1039/c3gc41360h CrossRefGoogle Scholar
  8. 8.
    Ciriminna R, Falletta E, Della Pina C, Teles JH, Pagliaro M (2016) Industrial applications of gold catalysis. Angew Chem Int Ed 55:14210–14217.  https://doi.org/10.1002/anie.201604656 CrossRefGoogle Scholar
  9. 9.
    Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665.  https://doi.org/10.1016/j.ccr.2012.09.002 CrossRefGoogle Scholar
  10. 10.
    Sengani M, Grumezescu AM, Rajeswari VD (2017) Recent trends and methodologies in gold nanoparticle synthesis—a prospective review on drug delivery aspect. OpenNano 2:37–46.  https://doi.org/10.1016/j.onano.2017.07.001 CrossRefGoogle Scholar
  11. 11.
    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116:10346–10413.  https://doi.org/10.1021/acs.chemrev.5b00703 CrossRefPubMedGoogle Scholar
  12. 12.
    Li N, Zhao P, Astruc D (2014) Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity. Angew Chem Int Ed 53:1756–1789.  https://doi.org/10.1002/anie.201300441 CrossRefGoogle Scholar
  13. 13.
    Lohse SE, Murphy CJ (2013) The quest for shape control: a history of gold nanorod synthesis. Chem Mater 25:1250–1261.  https://doi.org/10.1021/cm303708p CrossRefGoogle Scholar
  14. 14.
    Jia S, Bian C, Sun J, Tong J, Xia S (2018) A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury (II) ion by gold nanoparticles-DNA conjugates. Biosens Bioelectron 114:15–21.  https://doi.org/10.1016/j.bios.2018.05.004 CrossRefPubMedGoogle Scholar
  15. 15.
    Song Y, Feng D, Shao S, Liang J (2018) Colorimetric detection of low dose gamma radiation based on the aggregation of gold nanoparticles and its application for the blood irradiation. Talanta 187:308–313.  https://doi.org/10.1016/j.talanta.2018.05.012 CrossRefPubMedGoogle Scholar
  16. 16.
    Chen W, Yan C, Cheng L, Yao L, Xue F, Xu J (2018) An ultrasensitive signal-on electrochemical aptasensor for ochratoxin A determination based on DNA controlled layer-by-layer assembly of dual gold nanoparticle conjugates. Biosens Bioelectron 117:845–851.  https://doi.org/10.1016/j.bios.2018.07.012 CrossRefPubMedGoogle Scholar
  17. 17.
    Liu J (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys Chem Chem Phys 14:10485–10496.  https://doi.org/10.1039/C2CP41186E CrossRefPubMedGoogle Scholar
  18. 18.
    Koo KM, Sina AAI, Carrascosa LA, Shiddiky MJA, Trau M (2015) DNA–bare gold affinity interactions: mechanism and applications in biosensing. Anal Methods 7:7042–7054.  https://doi.org/10.1039/C5AY01479D CrossRefGoogle Scholar
  19. 19.
    Carnerero JM, Jimenez-Ruiz A, Castillo PM, Prado-Gotor R (2017) Covalent and non-covalent DNA–gold-nanoparticle interactions: new avenues of research. ChemPhysChem 18:17–33.  https://doi.org/10.1002/cphc.201601077 CrossRefPubMedGoogle Scholar
  20. 20.
    Sissoëff I, Grisvard J, Guillé E (1978) Studies on metal ions-DNA interactions: specific behaviour of reiterative DNA sequences. Prog Biophys Mol Biol 32:419–451.  https://doi.org/10.1016/0079-6107(78)90008-1 CrossRefGoogle Scholar
  21. 21.
    Sohn JS, Kwon YW, Jin JI, Jo BW (2011) DNA-templated preparation of gold nanoparticles. Molecules 16:8143–8151.  https://doi.org/10.3390/molecules16108143 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Lopatina LI, Karpushkin EA, Zinchenko A, Sergeyev VG (2016) Decoration of DNA scaffold by gold nanoparticles formed in aqueous solutions. Mendeleev Commun 26:291–292.  https://doi.org/10.1016/j.mencom.2016.07.007 CrossRefGoogle Scholar
  23. 23.
    Karpushkin EA, Gibalova AV, Lopatina LI, Sergeyev VG (2018) Effect of preliminary binding of HAuCl4 with DNA and cetyltrimethylammonium bromide in aqueous solution of morphology of the formed nanoparticles. Russ J Gen Chem 88:1690–1693.  https://doi.org/10.1134/S1070363218080212 CrossRefGoogle Scholar
  24. 24.
    Zhang T, Xu H, Xu S, Dong B, Wu Z, Zhang X, Zhang L, Song H (2016) DNA stabilized Ag–Au alloy nanoclusters and their application as sensing probes for mercury ions. RSC Adv 6:51609–51618.  https://doi.org/10.1039/c6ra07563k CrossRefGoogle Scholar
  25. 25.
    Zinchenko A, Miwa Y, Lopatina LI, Sergeyev VG, Murata S (2014) DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. ACS Appl Mater Interfaces 6:3226–3232.  https://doi.org/10.1021/am5008886 CrossRefPubMedGoogle Scholar
  26. 26.
    Zinchenko A, Che Y, Taniguchi S, Lopatina LI, Sergeyev VG, Murata S (2016) Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. J Nanopart Res 18:179.  https://doi.org/10.1007/s11051-016-3480-4 CrossRefGoogle Scholar
  27. 27.
    Zinchenko A, Nagahama C, Murata S (2016) Gold nanoparticles in DNA-based multilayer films: synthesis, size control, and influence of the multilayer structure on catalytic properties. ChemNanoMat 2:125–132.  https://doi.org/10.1002/cnma.201500089 CrossRefGoogle Scholar
  28. 28.
    Pillai CKS, Nandi US (1973) Binding of gold (III) with DNA. Biopolymers 12:1431–1435.  https://doi.org/10.1002/bip.1973.360120617 CrossRefPubMedGoogle Scholar
  29. 29.
    Pillai CKS, Nandi US (1978) Interaction of metal ions with nucleic acids and related compounds. II. Studies on Au (III)-nucleic acid system. Biopolymers 17:709–729.  https://doi.org/10.1002/bip.1978.360170313 CrossRefGoogle Scholar
  30. 30.
    Chatterji D, Nandi US, Podder SK (1977) Spectroscopic studies on the interaction of Au (III) with nucleosides, nucleotides, and dimethyl phosphate. Biopolymers 16:1863–1878.  https://doi.org/10.1002/bip.1977.360160904 CrossRefPubMedGoogle Scholar
  31. 31.
    Sarioglu OF, Tekiner-Gursacli R, Ozdemir A, Tekinay T (2014) Comparison of Au (III) and Ga (III) ions’ binding to calf thymus DNA: spectroscopic characterization and thermal analysis. Biol Trace Elem Res 160:445–452.  https://doi.org/10.1007/s12011-014-0059-8 CrossRefPubMedGoogle Scholar
  32. 32.
    Deraedt C, Salmon L, Gatard S, Ciganda R, Hernandez R, Ruiz J, Astruc D (2014) Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun 50:14194–14196.  https://doi.org/10.1039/c4cc05946h CrossRefGoogle Scholar
  33. 33.
    Kunoh T, Takeda M, Matsumoto S, Suzuki I, Takano M, Kunoh H, Takada J (2017) Green synthesis of gold nanoparticles coupled with nucleic acid oxidation. ACS Sustain Chem Eng 6:364–373.  https://doi.org/10.1021/acssuschemeng.7b02610 CrossRefGoogle Scholar
  34. 34.
    Wei H, Li B, Du Y, Dong S, Wang E (2007) Nucleobase-metal hybrid materials: preparation of submicrometer-scale, spherical colloidal particles of adenine-gold (III) via a supramolecular hierarchical self-assembly approach. Chem Mater 19:2987–2993.  https://doi.org/10.1021/cm070028a CrossRefGoogle Scholar
  35. 35.
  36. 36.
    Hall AJ, Satchel DPN (1977) Kinetics of the monosubstitution of chloride by thiocyanate, bromide, and iodide in tetrachloroaurate (III) ions in aqueous solution: the spectroscopic detection of reaction intermediates, and catalysis by chloride ions. J Chem Soc Dalton Trans:1403–1409.  https://doi.org/10.1039/dt9770001403
  37. 37.
    Hendel T, Wuithschick M, Kettemann F, Birnbaum A, Rademann K, Polte J (2014) In situ determination of colloidal gold concentrations with UV–Vis spectroscopy: limitations and perspectives. Anal Chem 86:11115–11124.  https://doi.org/10.1021/ac502053s CrossRefPubMedGoogle Scholar
  38. 38.
  39. 39.
    Mori T, Hegmann T (2016) Determining the composition of gold nanoparticles: a compilation of shapes, sizes, and calculations using geometric considerations. J Nanopart Res 18:295.  https://doi.org/10.1007/s11051-016-3587-7 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia
  2. 2.Skolkovo Institute of Science and TechnologyMoscowRussia

Personalised recommendations