Small DNA additives to polyelectrolyte multilayers promote formation of ultrafine gold nanoparticles with enhanced catalytic activity

  • Chihiro Nagahama
  • Anatoly ZinchenkoEmail author
Invited Article


Polymer matrices are important host materials for nesting nanoparticles to be used in photonic, catalytic, environmental, and other applications. Several past studies suggested a unique role of DNA macromolecular template in the process of noble metal nanoparticle (NP) formation and growth; yet, no comparative studies with other polymeric matrices were performed. In order to address the effect of DNA on metal NP formation and catalytic performance, we synthesized Au NP in PSSNa/PAH/DNA multilayered films containing varied amounts of DNA and systematically studied morphology of multilayers, structure of gold NP formed in the multilayers, and catalytic properties of the NP. We found that decrease of Au NP size due to increase of DNA contents in the multilayers caused significant enhancement in the hybrid material catalytic properties.

Graphical abstract


DNA Multilayers Gold nanoparticles Size control Catalysis 



Maruha Nichiro Holdings, Inc. (Japan) is gratefully acknowledged for free DNA samples extracted from salmon milt. We thank High Voltage Electron Microscope Laboratory at Institute of Materials and Systems for Sustainability, Nagoya University, for the assistance with transmission electron microscopy observations.

Funding information

This work was supported by JSPS KAKENHI Grant Number 25620183 (Grant-in-Aid for Exploratory Research).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Lee J, Peng SM, Yang DY, Roh YH, Funabashi H, Park N, Rice EJ, Chen LW, Long R, Wu MM, Luo D (2012) A mechanical metamaterial made from a DNA hydrogel. Nat Nanotechnol 7(12):816–820CrossRefGoogle Scholar
  2. 2.
    Yamada M, Sugiyama T (2008) Utilization of DNA-metal ion biomatrix as a relative humidity sensor. Polym J 40(4):327–331CrossRefGoogle Scholar
  3. 3.
    Shahbazi M-A, Bauleth-Ramos T, Santos HA (2018) DNA hydrogel assemblies: bridging synthesis principles to biomedical applications. Advanced Therapeutics 1(4):1800042CrossRefGoogle Scholar
  4. 4.
    Fernandez-Solis C, Kuroda Y, Zinchenko A, Murata S (2015) Uptake of aromatic compounds by DNA: toward the environmental application of DNA for cleaning water. Colloids Surf B 129:146–153CrossRefGoogle Scholar
  5. 5.
    Yamada M, Abe K (2014) Selective accumulation of rare earth metal and heavy metal ions by a DNA-inorganic hybrid material. Polym J 46(6):366–371CrossRefGoogle Scholar
  6. 6.
    Maeda Y, Zinchenko A, Lopatina LI, Sergeyev VG, Murata S (2013) Extraction of noble and rare-earth metals from aqueous solutions by DNA cross-linked hydrogels. Chem Plus Chem 78(7):619–622Google Scholar
  7. 7.
    Takahashi Y, Kondo K, Miyaji A, Watanabe Y, Fan QH, Honma T, Tanaka K (2014) Recovery and separation of rare earth elements using Salmon Milt. PLoS One 9(12):e114858CrossRefGoogle Scholar
  8. 8.
    Zinchenko A, Miwa Y, Lopatina LI, Sergeyev VG, Murata S (2014) DNA hydrogel as a template for synthesis of ultrasmall gold nanoparticles for catalytic applications. ACS Appl Mater Interfaces 6(5):3226–3232CrossRefGoogle Scholar
  9. 9.
    Okay O (2011) DNA hydrogels: new functional soft materials. J Polym Sci Polym Phys 49(8):551–556CrossRefGoogle Scholar
  10. 10.
    Kwon YW, Lee CH, Choi DH, Jin JI (2009) Materials science of DNA. J Mater Chem 19(10):1353–1380CrossRefGoogle Scholar
  11. 11.
    Liu XD, Yamada M, Matsunaga M, Nishi N (2007) Functional materials derived from DNA. Adv Polym Sci 209:149–178Google Scholar
  12. 12.
    Watson SMD, Pike AR, Pate J, Houlton A, Horrocks BR (2014) DNA-templated nanowires: morphology and electrical conductivity. Nanoscale 6(8):4027–4037CrossRefGoogle Scholar
  13. 13.
    Zinchenko A (2012) Templating of inorganic nanomaterials by biomacromolecules and their assemblies. Polym Sci Ser C 54(1):80–87CrossRefGoogle Scholar
  14. 14.
    Rudiuk S, Venancio-Marques A, Hallais G, Baigl D (2013) Preparation of one- to four-branch silver nanostructures of various sizes by metallization of hybrid DNA-protein assemblies. Soft Matter 9(38):9146–9152CrossRefGoogle Scholar
  15. 15.
    Liu JF, Geng YL, Pound E, Gyawali S, Ashton JR, Hickey J, Woolley AT, Harb JN (2011) Metallization of branched DNA origami for Nanoelectronic circuit fabrication. ACS Nano 5(3):2240–2247CrossRefGoogle Scholar
  16. 16.
    Zinchenko A, Sergeyev VG (2017) DNA-based materials as chemical reactors for synthesis of metal nanoparticles. Polym Sci Ser C 59(1):18–28CrossRefGoogle Scholar
  17. 17.
    Rakitin A, Aich P, Papadopoulos C, Kobzar Y, Vedeneev AS, Lee JS, Xu JM (2001) Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys Rev Lett 86(16):3670–3673CrossRefGoogle Scholar
  18. 18.
    Häring M, Tautz M, Alegre-Requena JV, Saldías C, Díaz Díaz D (2018) Non-enzyme entrapping biohydrogels in catalysis. Tetrahedron Lett 59(35):3293–3306CrossRefGoogle Scholar
  19. 19.
    Zinchenko A, Nagahama C, Murata S (2016) Gold nanoparticles in DNA-based multilayer films: synthesis, size control, and influence of the multilayer structure on catalytic properties. Chem Nano Mat 2(2):125–132Google Scholar
  20. 20.
    Takeshima T, Sun L, Wang YQ, Yamada Y, Nishi N, Yonezawa T, Fugetsu B (2014) Salmon milt DNA as a template for the mass production of Ag nanoparticles. Polym J 46(1):36–41CrossRefGoogle Scholar
  21. 21.
    Decher G, Hong JD (1991) Buildup of ultrathin multilayer films by a self-assembly process .1. Consecutive adsorption of anionic and cationic bipolar Amphiphiles on charged surfaces. Makromol Chem Macromol Symp 46:321–327CrossRefGoogle Scholar
  22. 22.
    Decher G (1996) Layered nanoarchitectures via directed assembly of anionic and cationic molecules. Pergamon Press, OxfordGoogle Scholar
  23. 23.
    Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Mohwald H (1998) Layer-by-layer self assembly of polyelectrolytes on colloidal particles. Colloids Surf A 137(1–3):253–266CrossRefGoogle Scholar
  24. 24.
    An R, Jia Y, Wan B, Zhang Y, Dong P, Li J, Liang X (2014) Non-enzymatic depurination of nucleic acids: factors and mechanisms. PLoS One 9(12):e115950CrossRefGoogle Scholar
  25. 25.
    Smith SB, Finzi L, Bustamante C (1992) Direct mechanical measurements of the elasticity of single DNA-molecules by using magnetic beads. Science 258(5085):1122–1126CrossRefGoogle Scholar
  26. 26.
    Spiteri MN, Boue F, Lapp A, Cotton JP (1996) Persistence length for a PSSNa polyion in semidilute solution as a function of the ionic strength. Phys Rev Lett 77(26):5218–5220CrossRefGoogle Scholar
  27. 27.
    Carnerero JM, Masuoka S, Baba H, Yoshikawa Y, Prado-Gotor R, Yoshikawa K (2018) Decorating a single giant DNA with gold nanoparticles. RSC Adv 8(47):26571–26579CrossRefGoogle Scholar
  28. 28.
    Jang NH (2002) The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull Kor Chem Soc 23(12):1790–1800CrossRefGoogle Scholar
  29. 29.
    Berti L, Burley GA (2008) Nucleic acid and nucleotide-mediated synthesis of inorganic nanoparticles. Nat Nanotechnol 3(2):81–87CrossRefGoogle Scholar
  30. 30.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346CrossRefGoogle Scholar
  31. 31.
    Zinchenko A., Che Y, Taniguchi S, Lopatina LI, Sergeyev VG, Murata S (2016) Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles. J Nanopart Res 18(7):179Google Scholar
  32. 32.
    Gu S, Wunder S, Lu Y, Ballauff M, Fenger R, Rademann K, Jaquet B, Zaccone A (2014) Kinetic analysis of the catalytic reduction of 4-Nitrophenol by metallic nanoparticles. J Phys Chem C 118(32):18618–18625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate School of Environmental StudiesNagoya UniversityNagoyaJapan

Personalised recommendations