Colloid and Polymer Science

, Volume 297, Issue 3, pp 409–416 | Cite as

Cycloaliphatic epoxy resin cured with anhydride in the absence of catalyst

  • Anna I. BarabanovaEmail author
  • Boris V. Lokshin
  • Elena P. Kharitonova
  • Irina V. Karandi
  • Egor S. Afanasyev
  • Andrey A. Askadskii
  • Olga E. Philippova
Invited Article


Understanding mechanisms of cycloaliphatic epoxy resin curing with anhydride is important for the preparation of new thermosetting polymer materials. In this paper, the curing of commercial epoxy monomer 4-epoxycyclohexylmethyl-3,4-epoxycyclohexane-carboxylate ERL-4221 with 4-methylhexahydrophthalic anhydride in the absence of catalyst was studied by two complementary methods: Fourier-transform infrared spectroscopy and differential scanning calorimetry. Different reaction pathways were examined, and the most probable curing mechanism was proposed. It was shown that the synthesized polymer network possesses glass transition temperature of 222 °C, which is among the highest values for cured epoxy resin obtained so far.


Cycloaliphatic epoxy resin Curing 


Funding information

The work was financially supported by the Russian Science Foundation (project no. 17-13-01535).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4430_MOESM1_ESM.docx (185 kb)
ESM 1 (DOCX 185 kb)


  1. 1.
    Bauer RS (1985) Epoxy resins. ACS Symp Ser 285:931–961CrossRefGoogle Scholar
  2. 2.
    Dusek K (1986) Epoxy resins and composites II. Springer, BerlinCrossRefGoogle Scholar
  3. 3.
    May CA (1987) Epoxy resins: chemistry and technology. Marcel Dekker Inc., New YorkGoogle Scholar
  4. 4.
    Ellis B (1993) Chemistry and technology of epoxy resins. Springer, DordrechtCrossRefGoogle Scholar
  5. 5.
    Petrie E (2005) Epoxy adhesive formulations. McGraw-Hill Chemical Engineering, New YorkGoogle Scholar
  6. 6.
    Pascault JP, Williams RJJ (2010) Epoxy polymers. New materials and innovations. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  7. 7.
    Pham HQ, Marks MJ (2012) Epoxy resins. Wiley-VCH, WeinheimGoogle Scholar
  8. 8.
    Wu Z, Wang Z, Sun T (2014) Epoxy resin: synthesis, modification and application. Lambert Academic Publishing, DüsseldorfGoogle Scholar
  9. 9.
    Barabanova AI, Shevnin PL, Priakhina TA, Bychko KA, Kazantseva VV, Zavin BG, Vygodskii Ya S, Askadskii AA, Philippova OE, Khokhlov AR (2008) Nanocomposites based on epoxy resin and silicon dioxide particles. Polym Sci 50:808–819Google Scholar
  10. 10.
    Barabanova AI, Philippova OE, Askadskii AA, Khokhlov AR (2012) Transparent epoxy/silica nanocomposites with increased glass transition temperatures. Procedia Chem 4:352–359CrossRefGoogle Scholar
  11. 11.
    Askadskii AA, Afanasev ES, Petunova MD, Barabanova AI, Goleneva LM, Philippova OE (2014) Structure and properties of nanocomposites based on a cured cycloaliphatic epoxy resin. Polym Sci 56:318–328Google Scholar
  12. 12.
    Trappe V, Burchard W (1991) Anhydride-cured epoxies via chain reaction. 1. The phenyl glycidyl ether/phthalic acid anhydride system. Macromolecules 24:4738–4744CrossRefGoogle Scholar
  13. 13.
    Kolář F, Svítilová J (2007) Kinetics and mechanism of curing epoxy/anhydride systems. Acta Geodyn Geomater 4:85–92Google Scholar
  14. 14.
    Fisch W, Hofmann W, Koskikallio J (1956) The curing mechanism of epoxy resins. Chem Ind 29:756–757Google Scholar
  15. 15.
    Fisch W, Hofmann W (1961) Chemischer aufbau von gehärteten epoxyharze. III. Mitteilung über chemie der epoxyharze. Makromol Chem 44:8–23CrossRefGoogle Scholar
  16. 16.
    Fischer R (1960) Polyesters from epoxides and anhydride. J Polym Sci 44:155–172CrossRefGoogle Scholar
  17. 17.
    Tanaka Y, Kakiuchi H (1964) Study of epoxy compounds. Part VI. Curing reactions of epoxy resin and acid anhydride with amine, acid, alcohol and phenol as catalysts. J Polym Sci Part A 2:3405–3430Google Scholar
  18. 18.
    Stevens GC (1981) Cure kinetics of a low epoxide/hydroxyl group-ratio bisphenol A epoxy resin-anhydride system by infrared absorption spectroscopy. J Appl Polym Sci 26:4259–4278CrossRefGoogle Scholar
  19. 19.
    Antoon MK, Koenig JL (1981) Crosslinking mechanism of an anhydride-cured epoxy resin as studied by Fourier transform infrared spectroscopy. J Polym Sci Polym Chem Ed 19:549–570CrossRefGoogle Scholar
  20. 20.
    Lee S-N, You W-B (1987) Cure kinetics of an epoxide/anhydride/amine resin system: a fractional-life method approach. Polym Eng Sci 27:1317–1322CrossRefGoogle Scholar
  21. 21.
    Montserrat S, Flaque C, Calafell M, Andreu G, Malek J (1995) Influence of the accelerator concentration on the curing reaction of an epoxy-anhydride system. Thermochim Acta 269/270:213–229CrossRefGoogle Scholar
  22. 22.
    Mauri AN, Galego N, Riccardi CC, Williams RJJ (1997) Kinetic model for gelation in the diepoxide-cyclic anhydride copolymerization initiated by tertiary amines. Macromolecules 30:1616–1620CrossRefGoogle Scholar
  23. 23.
    Xu J, Holst M, Wenzel M, Alig I (2008) Calorimetric studies on an anhydride-cured epoxy resin from diglycidyl ether of bisphenol-A and diglycidyl ether of poly(propylene glycol). I. Onset of diffusion control during isothermal polymerization. J Polym Sci Part B Polym Phys 46:2155–2165CrossRefGoogle Scholar
  24. 24.
    Naumann S, Speiser M, Schowner R, Giebel E, Buchmeiser MR (2014) Air stable and latent single-component curing of epoxy/anhydride resins catalyzed by thermally liberated N-heterocyclic carbenes. Macromolecules 47:4548–4556CrossRefGoogle Scholar
  25. 25.
    Rohde BJ, Robertson ML, Krishnamoorti (2015) Concurrent curing kinetics of an anhydride-cured epoxy resin and polydicyclopentadiene. Polymer 69:204–214CrossRefGoogle Scholar
  26. 26.
    Xie M, Wang Z (2001) Synthesis and properties of a novel cycloaliphatic epoxide. Macromol Rapid Commun 22:620–623CrossRefGoogle Scholar
  27. 27.
    Chen J, Soucek MD (2003) Ultraviolet curing kinetics of cycloaliphatic epoxide with real-time Fourier transform infrared spectroscopy. J Appl Polym Sci 90:2485–2499CrossRefGoogle Scholar
  28. 28.
    Komarov PV, Yu-Tsung C, Shih-Ming C, Khalatur PG, Reineker P (2007) Highly cross-linked epoxy resins: an atomistic molecular dynamics simulation combined with a mapping/reverse mapping procedure. Macromolecules 40:8104–8113CrossRefGoogle Scholar
  29. 29.
    Tao Z, Yang S, Chen J, Fan L (2007) Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins. Eur Polym 43:1470–1479CrossRefGoogle Scholar
  30. 30.
    Yoo MJ, Kim SH, Park SD, Lee WS, Sun J-W, Choi J-H, Nahm S (2010) Investigation of curing kinetic of various cycloaliphatic epoxy resins using dynamic thermal analysis. Eur Polym J 46:1158–1162CrossRefGoogle Scholar
  31. 31.
    Liu W, Wang Z, Xiong L, Zhao L (2010) Phosphorus-containing liquid cycloaliphatic epoxy resins for reworkable environment-friendly electronic packaging materials. Polymer 51:4776–4783CrossRefGoogle Scholar
  32. 32.
    Liu W, Wang Z, Chen Z, Li J, Zhao L (2012) Synthesis and properties of two novel silicon-containing cycloaliphatic epoxy resins for electronic packaging application. Polym Adv Technol 23:367–374CrossRefGoogle Scholar
  33. 33.
    Belmonte A, Dabritz F, Ramis X, Serra A, Voit B, Fernandez-Francos X (2014) Cure kinetics modeling and thermomechanical properties of cycloaliphatic epoxy-anhydride thermosets modified with hyperstar polymers. J Polym Sci B Polym Phys 52:1227–1242CrossRefGoogle Scholar
  34. 34.
    Buchwalter SL (1996) Formulating a cycloaliphatic epoxy for microelectronic encapsulation: a DSC study on a model system. Polym Prepr (ACS, Div Polym Chem) 211:220-POLYGoogle Scholar
  35. 35.
    Prime RB (1981) In: Turi EA (ed) Thermal characterization of polymeric materials, ch. 5. Academic Press, New York, p. 435Google Scholar
  36. 36.
    Yi H (2005) Thermal characterization of overmolded underfill materials for stacked chip scale packages. Thermochim Acta 433:98–104CrossRefGoogle Scholar
  37. 37.
    Yang S, Chen J-S, Korner H, Breiner T, Ober CK (1998) Reworkable epoxies: thermosets with thermally cleavable groups for controlled network breakdown. Chem Mater 10:1475–1482CrossRefGoogle Scholar
  38. 38.
    Toba Y, Saito M, Usui Y (1999) Cationic photopolymerization of epoxides by direct and sensitized photolysis of onium tetrakis(pentafluorophenyl)borate initiators. Macromolecules 32:3209–3215CrossRefGoogle Scholar
  39. 39.
    Wu F, Zhou X, Yu X (2018) Reaction mechanism, cure behavior and properties of a multifunctional epoxy resin, TGDDM, with latent curing agent dicyandiamide. RSC Adv 8:8248–8258CrossRefGoogle Scholar
  40. 40.
    Wan JT, Bu ZY, Xu CJ, Li BG, Fan H (2011) Learning about novel amine-adduct curing agents for epoxy resins: butyl-glycidylether-modified poly(propyleneimine) dendrimers. Thermochim Acta 519:72–82CrossRefGoogle Scholar
  41. 41.
    Kissenger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:1702–1706CrossRefGoogle Scholar
  42. 42.
    Harsch M, Karger-Kocsis J, Holst M (2007) Influence of fillers and additives on the cure kinetics of an epoxy/anhydride resin. Eur Polym J 43:1168–1178CrossRefGoogle Scholar
  43. 43.
    Huang GC, Lee JK (2010) Isothermal cure characterization of fumed silica/epoxy nanocomposites: the glass transition temperature and conversion. Compos Part A 41:473–479CrossRefGoogle Scholar
  44. 44.
    Ly UQ, Pham M-P, Marks MJ, Truong TN (2017) Density functional theory study of mechanism of epoxy-carboxylic acid curing reaction. Comput Chem 38:1093–1102CrossRefGoogle Scholar
  45. 45.
    Madec P-J, Maréchal E (1985) Kinetics and mechanisms of polyesterifications II. Reactions of diacids and diepoxides. Adv Polym Sci 71:153–228CrossRefGoogle Scholar
  46. 46.
    Sorokin MF, Gershanova EL (1967) Mechanism of reaction of monoepoxides with carboxylic acids. Kinet Katal 8:512–519Google Scholar
  47. 47.
    Rokaszewski E (1978) Kinetics and mechanism of reactions of alkene oxides with carboxylic groups in protophilic solvent. Pol J Chem 52:1487–1494Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Anna I. Barabanova
    • 1
    • 2
    Email author
  • Boris V. Lokshin
    • 1
  • Elena P. Kharitonova
    • 2
  • Irina V. Karandi
    • 1
  • Egor S. Afanasyev
    • 1
  • Andrey A. Askadskii
    • 1
    • 3
  • Olga E. Philippova
    • 2
  1. 1.A.N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Physics DepartmentMoscow State UniversityMoscowRussia
  3. 3.Moscow State University of Civil EngineeringMoscowRussia

Personalised recommendations