Advertisement

Dilute-semidilute regime crossover in aqueous solutions of poly(acrylic acid)-sodium poly(styrene sulfonate) mixtures

  • Ekaterina A. LitmanovichEmail author
  • Ekaterina V. Kotova
  • Vladislav V. Efremov
Invited Article
  • 42 Downloads

Abstract

Overlap and entanglement formation in aqueous solutions of mixtures of poly(acrylic acid) (PAA) and sodium poly(styrene sulfonate) (PSS) have been studied by means of light scattering and viscometry in comparison with concentration transitions in solutions of the individual polyelectrolytes. In the presence of 0.1 M HCl, PAA forms a complex with PSS due to ion-dipole interactions of carboxylic groups with polyanion sulfonic groups. In the overlap region, a single diffusion mode is split into “fast” and “slow” modes, with the average scattering intensity passing through a maximum. In the region of entanglement network formation, the third mode appears, which we interpret as an interaction mode. The concentration dependences of diffusion coefficients and viscosity of the considered systems coincide with the theoretical predictions of the scaling model of polyelectrolyte solutions. In semidilute regime, the viscosity of the complex significantly exceeds that of initial components, indicating strong structuring of the solution.

Graphical abstract

Keywords

Polyelectrolyte complexes Semidilute solutions Light scattering Rheology 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Thünemann A F, Müller M, Dautzenberg H, Joanny J F, Löwen H (2004) Polyelectrolyte complexes. In: Schmidt M. (eds) polyelectrolytes with defined molecular architecture II. Adv Polym Sci 166:113-171.  https://doi.org/10.1007/b10951 Google Scholar
  2. 2.
    Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P (2017) A comprehensive review on polyelectrolyte complexes. Drug Discov Today 22(11):1697–1706.  https://doi.org/10.1016/j.drudis.2017.06.008 CrossRefPubMedGoogle Scholar
  3. 3.
    van der Gucht J, Spruijt E, Lemmers M, Cohen Stuart MA (2011) Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interface Sci 361:407–422.  https://doi.org/10.1016/j.jcis.2011.05.080 CrossRefPubMedGoogle Scholar
  4. 4.
    Kötz J, Kosmella S, Beitz T (2001) Self-assembled polyelectrolyte systems. Prog Polym Sci 26:1199–1232.  https://doi.org/10.1016/S0079-6700(01)00016-8 CrossRefGoogle Scholar
  5. 5.
    dos Santos S, Piculell L, Medronho B, Miguel MG, Lindman B (2012) Phase behavior and rheological properties of DNA–cationic polysaccharide mixtures. J Colloid Interface Sci 383:63–74.  https://doi.org/10.1016/j.jcis.2012.06.011 CrossRefPubMedGoogle Scholar
  6. 6.
    Gummel J, Cousin F, Boué F (2008) Structure transition in PSS/lysozyme complexes: a chain-conformation-driven process, as directly seen by small angle neutron scattering. Macromolecules 41:2898–2907.  https://doi.org/10.1021/ma702242d CrossRefGoogle Scholar
  7. 7.
    Litmanovich EA, Zakharchenko SO, Stoichev GV (2007) Influence of chain charge and complexation on the overlap and entanglements formation in poly(acrylic acid) salt-containing aqueous solutions. J Phys Chem B 111(29):8567–8571.  https://doi.org/10.1021/jp070070t CrossRefPubMedGoogle Scholar
  8. 8.
    Hoffmann I, Farago B, Schweins R, Falus P, Sharp M, Prévost S, Gradzielski M (2015) On the mesoscopic origins of high viscosities in some polyelectrolyte-surfactant mixtures. J Chem Phys 143(7):074902.  https://doi.org/10.1063/1.4928583 CrossRefPubMedGoogle Scholar
  9. 9.
    Bu H, Kjøniksen A-L, Knudsen KD, Nyström B (2007) Characterization of interactions in aqueous mixtures of hydrophobically modified alginate and different types of surfactant. Colloids Surf A Physicochem Eng Asp 293:105–113.  https://doi.org/10.1016/j.colsurfa.2006.07.028 CrossRefGoogle Scholar
  10. 10.
    Wu Q, Du M, Shangguan Y, Zhou J, Zheng Q (2009) Investigation on the interaction between C16TAB and NaCMC in semidilute aqueous solution based on rheological measurement. Colloids Surf A Physicochem Eng Asp 332:13–18.  https://doi.org/10.1016/j.colsurfa.2008.08.022 CrossRefGoogle Scholar
  11. 11.
    Wu Q, Shangguan Y, Du M, Zhou J, Zheng Q (2009) Steady and dynamic rheological behaviors of sodium carboxymethyl cellulose entangled semi-dilute solution with opposite charged surfactant dodecyl-trimethylammonium bromide. J Colloid Interface Sci 339:236–242.  https://doi.org/10.1016/j.jcis.2009.07.036 CrossRefPubMedGoogle Scholar
  12. 12.
    Liu RCW, Morishima Y, Winnik FM (2002) Rheological properties of mixtures of oppositely charged polyelectrolytes. A study of the interactions between a cationic cellulose ether and a hydrophobically modified poly[sodium 2-(acrylamido)-2-methylpropanesulfonate]. Polym J 34(5):340–346.  https://doi.org/10.1295/polymj.34.340 CrossRefGoogle Scholar
  13. 13.
    Dreval’ VE, Vasil’ev GB, Litmanovich EA, Kulichikhin VG (2008) Rheological properties of concentrated aqueous solutions of anionic and cationic polyelectrolyte mixtures. Polym Sci Ser A 50(7):751–756.  https://doi.org/10.1134/S0965545X08070043 CrossRefGoogle Scholar
  14. 14.
    Dubin P, Stewart R J (2017) Complex coacervation.  https://doi.org/10.1039/c7sm90206a CrossRefGoogle Scholar
  15. 15.
    Rubinstein M, Dobrynin AV (1999) Associations leading to formation of reversible networks and gels. Curr Opin Colloid Interface Sci 4:83–87.  https://doi.org/10.1016/S1359-0294(99)00013-8 CrossRefGoogle Scholar
  16. 16.
    Seigel A, Arndt E (eds) (2011) Properties and behavior of polymers. Wiley, Ney Jersey.  https://doi.org/10.1016/S1359-0294(99)00013-8 CrossRefGoogle Scholar
  17. 17.
    Xingping Q, Ming J (1994) Intermacromolecular complexation due to specific interactions: 1. The hydrogen bonding complex between poly (methylmethacrylate) and modified polystyrene. Polymer 35(23):5084–5090.  https://doi.org/10.1016/0032-3861(94)90669-6 CrossRefGoogle Scholar
  18. 18.
    Smith KL, Winslow AE, Petersen DE (1959) Association reactions for poly(alkylene oxides) and polymeric poly(carboxylic acids). Ind Eng Chem 51:1361–1364.  https://doi.org/10.1021/ie50599a029 CrossRefGoogle Scholar
  19. 19.
    Baranovsky VY, Shenkov S (1996) Competitive complex forming reactions between monosubstituted and nonsubstituted polyethylene glycols with poly(methacrylic acid). J Polym Sci 34:163–167.  https://doi.org/10.1002/(SICI)1099-0518(19960130)34:2<163::AID-POLA1>3.0.CO;2-V CrossRefGoogle Scholar
  20. 20.
    Kharlampieva E, Kozlovskaya V, Sukhishvili SA (2009) Layer-by-layer hydrogenbonded polymer films: from fundamentals to applications. Adv Mater 21:3053–3065.  https://doi.org/10.1002/adma.200803653 CrossRefGoogle Scholar
  21. 21.
    Litmanovich EA, Chernikova EV, Stoychev GV, Zakharchenko SO (2010) Unusual phase behavior of the mixture of poly(acrylic acid) and poly(diallyldimethylammonium chloride) in acidic media. Macromolecules 43(16):6871–6876.  https://doi.org/10.1021/ma1003562 CrossRefGoogle Scholar
  22. 22.
    Bergfeldt K, Piculell L, Tjerneld F (1995) Phase separation phenomena and viscosity enhancements in aqueous mixtures of poly(styrenesu1fonate) with poly( acrylic acid) at different degrees of neutralization. Macromolecules 28:3360–3370.  https://doi.org/10.1021/ma00113a041 CrossRefGoogle Scholar
  23. 23.
    M’Bareck CO, Nguyen QT, Metayer M, Saiter JM, Garda MR (2004) Poly (acrylic acid) and poly (sodium styrenesulfonate) compatibility by Fourier transform infrared and differential scanning calorimetry. Polymer 45:4181–4187.  https://doi.org/10.1016/j.polymer.2004.03.044 CrossRefGoogle Scholar
  24. 24.
    Yudin IK, Anisimov MA, Agayan VA, Kosov VI, Nikolaenko GL, Sengers J (1997) A compact photoncorrelation spectrometer for research and education. Int J Thermophys 18:1237–1248.  https://doi.org/10.1007/BF02575258 CrossRefGoogle Scholar
  25. 25.
    des Cloizeaux J, Noda I (1982) Osmotic pressure of long polymers in good solvents at moderate concentrations: a comparison between experiments and theory. Macromolecules 15:1505–1507.  https://doi.org/10.1021/ma00234a010 CrossRefGoogle Scholar
  26. 26.
    Sedlàk M (1999) What can be seen by static and dynamic light scattering in polyelectrolyte solutions and mixtures? Langmuir 15(12):4045–4051.  https://doi.org/10.1021/la981189j CrossRefGoogle Scholar
  27. 27.
    Štěpánek P, Brown W (1998) Multiple relaxations of concentration fluctuations in entangled polymer solutions. Macromolecules 31(6):1889–1897.  https://doi.org/10.1021/ma970458u CrossRefGoogle Scholar
  28. 28.
    Nicolai T, Brown W (1996) Scattering from concentrated polymer solutions. In: Brown W (ed) Light scattering : principles and development . Oxford : Clarendon press. Oxford University Press, New YorkGoogle Scholar
  29. 29.
    Semenov AN (1990) Dynamical correlation function of polymer density fluctuations in concentrated solutions. Physica A 166(2):263–287.  https://doi.org/10.1016/0378-4371(90)90016-L CrossRefGoogle Scholar
  30. 30.
    Boudenne N, Anastasiadis SH, Fytas G, Xenidou M, Hadjichristidis N, Semenov AN, Fleischer G (1996) Thermodynamic effects on internal relaxation in diblock copolymers. Phys Rev Lett 77(3):506–509.  https://doi.org/10.1103/PhysRevLett.77.506 CrossRefPubMedGoogle Scholar
  31. 31.
    De Gennes PJ (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  32. 32.
    Dobrynin AV, Colby RH, Rubinstein M (1996) Scaling theory of polyelectrolyte solutions. Macromolecules 28:1859–1871.  https://doi.org/10.1021/ma00110a021 CrossRefGoogle Scholar
  33. 33.
    Di Cola E, Waigh TA, Colby RH (2007) Dynamic light scattering and rheology studies of aqueous solutions of amphiphilic sodium maleate containing copolymers. J Polym Sci B Polym Phys 45:774–785.  https://doi.org/10.1002/polb.21079 CrossRefGoogle Scholar
  34. 34.
    Kavassalis TA, Noolandi J (1989) Entanglement scaling in polymer melts and solutions. Macromolecules 22:2709–2720.  https://doi.org/10.1021/ma00196a031 CrossRefGoogle Scholar
  35. 35.
    Lin YH (1987) Number of entanglement strands per cubed tube diameter, a fundamental aspect of topological universality in polymer viscoelasticity. Macromolecules 20(12):3080–3083.  https://doi.org/10.1021/ma00178a024 CrossRefGoogle Scholar
  36. 36.
    Sedlàk M (1996) The ionic strength dependence of the structure and dynamics of polyelectrolyte solutions as seen by light scattering: the slow mode dilemma. J Chem Phys 105(22):10123–10133.  https://doi.org/10.1063/1.472841 CrossRefGoogle Scholar
  37. 37.
    Sedlàk M (2002) Generation of multimacroion domains in polyelectrolyte solutions by change of ionic strength or pH (macroion charge). J Chem Phys 116(12):5256–5262.  https://doi.org/10.1063/1.1445111 CrossRefGoogle Scholar
  38. 38.
    Wang J, Wu C (2016) Reexamination of the origin of slow relaxation in semidilute polymer solutions—reptation related or not? Macromolecules 49(8):3184–3191.  https://doi.org/10.1021/acs.macromol.6b00298 CrossRefGoogle Scholar
  39. 39.
    Yuan G, Wang X, Han CC, Wu C (2006) Reexamination of slow dynamics in semidilute solutions: from correlated concentration fluctuation to collective diffusion. Macromolecules 39(10):3642–3647.  https://doi.org/10.1021/ma060060a CrossRefGoogle Scholar
  40. 40.
    Li J, Ngai T, Wu C (2010) The slow relaxation mode: from solutions to gel networks. Polym J 42:609–625.  https://doi.org/10.1038/pj.2010.59 CrossRefGoogle Scholar
  41. 41.
    Yang C, Meng B, Liu X, Chen M, Hua Y, Ni Z (2006) Dynamics of amylopectin in semidilute aqueous solution. Polymer 47:8044–8052.  https://doi.org/10.1016/j.polymer.2006.08.030 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ekaterina A. Litmanovich
    • 1
    Email author
  • Ekaterina V. Kotova
    • 1
  • Vladislav V. Efremov
    • 1
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations