Advertisement

Colloid and Polymer Science

, Volume 296, Issue 12, pp 2005–2014 | Cite as

A grazing incidence neutron spin echo study of near surface dynamics in p(MEO2MA-co-OEGMA) copolymer brushes

  • Stefan WellertEmail author
  • Jessica Hübner
  • Dikran Boyaciyan
  • Oxana Ivanova
  • Regine von Klitzing
  • Olaf Soltwedel
  • Olaf Holderer
Original Contribution

Abstract

Surface-attached architectures of p(MEO2MA-co-OEGMA) copolymers are thermoresponsive PEG analogues with potential applications in biotechnology and medicine. In this respect, structure and dynamics of polymer brushes made of these copolymers are of great interest. In this work, the near surface dynamics of a p(MEO2MA-co-OEGMA) brush with a height of 250 nm was investigated with neutron spin echo spectroscopy under grazing incidence (GINSES) conditions. The brush dynamics was studied at two penetration depths of the neutrons. An influence of the distance from the confining surface on the collective diffusion was found. For the first time, the experiment demonstrates the feasibility of studying thermal fluctuations of macromolecules at a single planar liquid/solid interface by neutron spin echo spectroscopy under grazing incidence.

Keywords

Copolymers Interfaces Neutron scattering Polymer brushes Thin films 

Notes

Acknowledgments

This work is based upon experiments performed at the JNSE and NREX+ instruments operated by JCNS and MPG at the Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany.

Funding Information

This study was funded by Deutsche Forschungsgemeinschaft DFG (grant number WE5066/3-1 (S. Wellert) and HO 5488/2-1 (O. Holderer) and IRTG 1524(R. von Klitzing)).

Compliance with Ethical Standards

Conflicts of Interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4421_MOESM1_ESM.tex (8 kb)
(TEX 7.53 KB)
396_2018_4421_MOESM2_ESM.png (54 kb)
(PNG 54.3 KB)
396_2018_4421_MOESM3_ESM.png (54 kb)
(PNG 53.6 KB)
396_2018_4421_MOESM4_ESM.png (80 kb)
(PNG 80.4 KB)
396_2018_4421_MOESM5_ESM.png (89 kb)
(PNG 89.0 KB)

References

  1. 1.
    Uhlmann P, Merlitz H, Sommer J-U, Stamm M (2009) Polymer brushes for surface tuning. Macromol Rapid Commun 30:732– 740CrossRefGoogle Scholar
  2. 2.
    Brittain WJ, Minko S (2007) Structural definition of polymer brushes. J Polym Sci Part A Polym Chem 45:3505– 3512CrossRefGoogle Scholar
  3. 3.
    Milner ST (1991) Polymer brushes. Science 251:905–914CrossRefGoogle Scholar
  4. 4.
    Halperin A, Kröger M (2012) Theoretical considerations on mechanisms of harvesting cells cultured on thermoresponsive polymer brushes. Biomaterials 33:4975–4987CrossRefGoogle Scholar
  5. 5.
    Christau S, Genzer J, von Klitzing R (2014) Polymer brush/metal nanoparticle hybrids for optical sensor applications: from Self-Assembly to tailored functions and nanoengineering. Z Phys Chem 229:1089–1117Google Scholar
  6. 6.
    Toomey R, Tirrell M (2008) Functional polymer brushes in aqueous media from self-assembled and surface-initiated polymers. Ann Rev Phys Chem 59:493–517CrossRefGoogle Scholar
  7. 7.
    Azzaroni O (2012) Polymer brushes here there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. J Polym Sci Part A: Polym Chem 50:3225CrossRefGoogle Scholar
  8. 8.
    Granick S, Kumar SK, Amis EJ, Antonietti M, Balazs AC, Chakraborty AK, Grest GS, Hawker G, Janmey P, Kramer EJ, Nuzzo R, Rusell TP, Safinya CR (2003) Macromolecules at surfaces: research challenges and opportunities from tribology to biology. J Polym Sci Part B: Polym Phys 41:2755CrossRefGoogle Scholar
  9. 9.
    Stuart MAC, Huck WTS, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I, Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging applications of stimuli-responsive polymer materials. Nat Mater 9:101CrossRefGoogle Scholar
  10. 10.
    Advincula RC, Brittain WJ, Caster KC, Rühe J (eds) (2004) Polymer brushes. Wiley-VCH, New YorkGoogle Scholar
  11. 11.
    Mihai R, Florescu IP, Coroiu V, Oancea A, Lungu M (2011) In vitro biocompatability testing of some synthetic polymers used for the achievement of nervous conduits. J Med Life 4:250– 255PubMedPubMedCentralGoogle Scholar
  12. 12.
    Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554CrossRefGoogle Scholar
  13. 13.
    Klushin LI, Skvortsov AM (1991) Critical dynamics of a polymer chain in a grafted monolayer. Macromolecules 24:1549– 1553CrossRefGoogle Scholar
  14. 14.
    Neelov I, Binder K (1995) Brownian dynamics of grafted polymer chains: time dependent properties. Macromol Theory Simul 4:1063–1084CrossRefGoogle Scholar
  15. 15.
    Klein J (1992) Dynamics of polymer chains tethered at the solid-liquid interface structure macromol. Reports A29:99– 106Google Scholar
  16. 16.
    Marko JF, Chakrabarti A (1993) Dynamic collective correlations of polymer brushes. Phys Rev Static E 48:2739–2742CrossRefGoogle Scholar
  17. 17.
    Reith D, Milchev A, Virnau P, Binder K (2012) Computer simulation studies of chain dynamics in polymer brushes. Macromolecules 45:4381–4393CrossRefGoogle Scholar
  18. 18.
    He G-L, Merlitz H, Sommer J-U, Wu C-X (2007) Static and dynamic properties of polymer brushes at moderate and high grafting densities: a molecular dynamics study. Macromolecules 40:6721–6730CrossRefGoogle Scholar
  19. 19.
    Lang M, Werner M, Dockhorn R, Kreer T (2016) Arm retraction dynamics in dense polymer brushes. Macromolecules 49:5190–5201CrossRefGoogle Scholar
  20. 20.
    Gao X, Kucera N, Nieh M, Katsaras J, Zhu S, Brash JL, Sheardown H (2009) Chain conformation of a new class of PEG-based thermoresponsive polymer brushes grafted on silicon as determined by neutron reflectometry. Langmuir 25:10271– 10278CrossRefGoogle Scholar
  21. 21.
    Elliot IG, Mulder DE, Traskelin PT, Ell JR, Patten TE, Kuhl TL, Faller R (2009) Confined polymer systems: synergies between simulations and neutron scattering experiments. Soft Matter 5:4612–4622CrossRefGoogle Scholar
  22. 22.
    Gelbert M, Biesalski M, Rühe J, Johannsmann D (2000) Collapse of polyelectrolyte brushes probed by noise analysis of a scanning force microscope cantilever. Langmuir 16:5774–5784CrossRefGoogle Scholar
  23. 23.
    Roters A, Johannsmann D (1996) Distance-dependent noise measurements in scanning force microscopy. J Phys: Condens Matter 8:7561–7577Google Scholar
  24. 24.
    Liu F, de Beer S, van den Ende D, Mugele F (2013) Atomic force microscopy of confined liquids using the thermal bending fluctuations of the cantilever. Phys Rev E 87(6):2406CrossRefGoogle Scholar
  25. 25.
    Binder K (2002) Scaling concepts for polymer brushes and their test with computer simulation. Eur Phys J E 9:293–298CrossRefGoogle Scholar
  26. 26.
    Fytas G, Anastasiadis SH, Seghrouchni R, Vlassopoulos D, Li J, Factor BJ, Theobald W, Toprakcioglu C (1996) Probing collective motions of terminally anchored polymers. Science 274:2041–2044CrossRefGoogle Scholar
  27. 27.
    Cristofolini L (2014) Synchrotron X-ray techniques for the investigation of structures and dynamics in interfacial systems. Curr Opin Colloid Interface Sci 19:228–241CrossRefGoogle Scholar
  28. 28.
    Leheny RL (2012) XPCS Nanoscale Motion and rheology. Curr Opin Colloid Interface Sci 17:3–12CrossRefGoogle Scholar
  29. 29.
    Frielinghaus X, Brodeck M, Holderer O, Frielinghaus H (2010) Confined polymer dynamics on clay platelets. Langmuir 26:17444–17448CrossRefGoogle Scholar
  30. 30.
    Krutyeva M, Wischnewski A, Monkenbusch M, Willner L, Maiz J, Mijangos C, Arbe A, Colmenero J, Radulescu A, Holderer O, Ohl M, Richter D (2013) Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys Rev Lett 110:108303CrossRefGoogle Scholar
  31. 31.
    Colmenero J, Arbe A (2013) Recent progress on polymer dynamics by neutron scattering: from simple polymers to complex materials. J Polym Sci B 51:87–113CrossRefGoogle Scholar
  32. 32.
    Wei Y, Xu Y, Faraone A, Hore MJA (2018) Local structure and relaxation dynamics in the brush of polymer-grafted silica nanoparticles. ACS Macro Lett 7:699–704CrossRefGoogle Scholar
  33. 33.
    Genix A-C, Oberdisse J (2015) Structure and dynamics of polymer nanocomposites studied by X-ray and neutron scattering techniques. Curr Opin Colloid Interface Sci 20:293–303CrossRefGoogle Scholar
  34. 34.
    Jiang N, Endoh MK, Koga T, Masui T, Kishimoto H, Nagao M, Satija SK, Taniguchi T (2015) Nanostructures and dynamics of macromolecules bound to attractive filler surfaces. ACS Macro Lett 4:838–842CrossRefGoogle Scholar
  35. 35.
    Sigel R (2009) Light Scattering near and from interfaces using evanescent wave and ellipsometric light scattering. Curr Opin Light Scattering Near Colloid Interface Sci 14:426–437CrossRefGoogle Scholar
  36. 36.
    Gianneli M, Roskamp RF, Jonas U, Loppinet B, Fytas G, Knoll W (2008) Dynamics of swollen gel layers anchored to solid surfaces. Soft Matter 4:1443–1447CrossRefGoogle Scholar
  37. 37.
    Yakubov G, Loppinet B, Zhang H, Ruhe J, Sigel R, Fytas G (2004) Collective dynamics of an end-grafted polymer brush in solvents of varying quality. Phys Rev Lett 92:115501CrossRefGoogle Scholar
  38. 38.
    Kim H, Jang Z, Lee H, Lee YJ, Jiao X, Li C, Lurio L, Rafailovich M, Sinha SK (2007) Hydrodynamic surface fluctuations of polymer films by coherent X-ray scattering. Thin solid Films 515:5536–5540CrossRefGoogle Scholar
  39. 39.
    Wang S, Yang S, Lee J, Akgun B, Wu DT, Foster MD (2013) Anomalous surface relaxations of branched-polymer melts. Phys Rev Lett 111:068303–1CrossRefGoogle Scholar
  40. 40.
    Vagias A, Košovan P, Koynov K, Holm C, Butt H-J, Fytas G (2014) Dynamics in stimuli-responsive poly(N-isopropylacrylamide) hydrogel layers as revealed by fluorescence correlation spectroscopy. Macromolecules 47:5303– 5312CrossRefGoogle Scholar
  41. 41.
    Papadakis CM, Košovan P, Richtering W, Wöll D (2014) Polymers in focus: fluorescence correlation spectroscopy. Colloid Polym Sci 292:2399–2411CrossRefGoogle Scholar
  42. 42.
    Jonas AM, Glinel K, Oren R, Nysten B, Huck WTS (2007) Thermo-responsive polymer brushes with tunable collapse temperatures in the physiological range. Macromolecules 40:4403–4405CrossRefGoogle Scholar
  43. 43.
    Khaydukov Y, Soltwedel O, Keller T (2015) NREX neutron reflectometer with X-ray option. J Large-Scale Res Facil 1:A38CrossRefGoogle Scholar
  44. 44.
    Holderer O, Monkenbusch M, Schätzler R, Kleines H, Westerhausen W, Richter D (2008) The JCNS neutron spin- echo spectrometer j-NSE at the FRM II. Measur Sci Technol 19: 034022CrossRefGoogle Scholar
  45. 45.
    Frielinghaus H, Kerscher M, Holderer O, Monkenbusch M, Richter D (2012) Acceleration of membrane dynamics adjacent to a wall. Phys Rev E 85(4):1408CrossRefGoogle Scholar
  46. 46.
    Lipfert F, Frielinghaus H, Holderer O, Mattauch S, Monkenbusch M, Arend N, Richter D (2014) Polymer enrichment decelerates surfactant membranes near interfaces. Phys Rev E 89(4):2303CrossRefGoogle Scholar
  47. 47.
    Frielinghaus H, Gvaramia M, Mangiapia G, Jaksch S, Ganeva M, Koutsioubas A, Mattauch S, Ohl M, Monkenbusch M, Holderer O (2017) New tools for grazing incidence neutron scattering experiments open perspectives to study nano-scale tribology mechanisms. Nuclear Instrum Methods Phys Res Sect A: Accelerators, Spectrometers Detectors Assoc Equip 871: 72–76CrossRefGoogle Scholar
  48. 48.
    Nouhi S, Hellsing MS, Kapaklis V, Rennie AR (2017) Grazing-incidence small-angle neutron scattering from structures below an interface. J Appl Cryst 50:1066–1074CrossRefGoogle Scholar
  49. 49.
    Müller-Buschbaum P, Schulz L, Metwalli E, Moulin J-F, Cubitt R (2008) Lateral structures of buried interfaces in ABA-type Triblock copolymer films. Langmuir 24:7639– 7644CrossRefGoogle Scholar
  50. 50.
    Lutz J-F, Akdemir O, Hoth A (2006) Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over?. J Am Chem Soc 128:13046– 13047CrossRefGoogle Scholar
  51. 51.
    Laloyaux X, Mathy B, Nysten B, Jonas AM (2010) Surface and bulk collapse transitions of thermoresponsive polymer brushes. Langmuir 26:838–847CrossRefGoogle Scholar
  52. 52.
    Lutz J-F, Hoth A, Schade K (2009) Design of oligo(ethylene glycol)-based thermoresponsive Polymers: an optimization study. Des Monomers Polym 12:343–353CrossRefGoogle Scholar
  53. 53.
    Laurent P, Souharce G, Duchet-Rumeau J, Portinha D, Charlot A (2012) Arm retraction dynamics in dense polymer brushes. Soft Matter 8:715–725CrossRefGoogle Scholar
  54. 54.
    Synytska A, Svetushkina E, Puretskiy N, Stoychev G, Berger S, Ionov L, Bellmann C, Eichhorn K-J, Stamm M (2010) Biocompatible polymeric materials with switchable adhesion properties. Soft Matter 6:5907–5914CrossRefGoogle Scholar
  55. 55.
    Gao J, Rice SA (1989) Light scattering with incident evanescent waves: a method for studying the properties of adsorbed polymers. J Chem Phys 90:3469–3478CrossRefGoogle Scholar
  56. 56.
    Gao J, Freed KF, Rice SA (1990) Light scattering with evanescent waves: intermolecular interference and the structure factor for an ideal flexible chain at an interacting interface. J Chem Phys 93:2785–2800CrossRefGoogle Scholar
  57. 57.
    de Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interf Sci 27:189–209CrossRefGoogle Scholar
  58. 58.
    Gawlitza K, Ivanova O, Holderer O, Radulescu A, von Klitzing R, Wellert S (2015) Bulk phase and surface dynamics of PEG microgel particles. Macromolecules 48:5807–5815CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefan Wellert
    • 1
    Email author
  • Jessica Hübner
    • 1
  • Dikran Boyaciyan
    • 2
  • Oxana Ivanova
    • 4
  • Regine von Klitzing
    • 2
  • Olaf Soltwedel
    • 3
  • Olaf Holderer
    • 4
  1. 1.Stranski-Laboratory for Physical and Theoretical ChemistryTechnische Universität BerlinBerlinGermany
  2. 2.Department of PhysicsTechnische Universität DarmstadtDarmstadtGermany
  3. 3.Heinz Maier-Leibniz-ZentrumGarchingGermany
  4. 4.Jülich Center for Neutron Science (JCNS) at the Heinz Maier-Leibniz-Zentrum Forschungszentrum Jülich GmbHGarchingGermany

Personalised recommendations