Advertisement

Colloid and Polymer Science

, Volume 297, Issue 1, pp 69–76 | Cite as

Agglomeration controllable reprecipitation method using solvent mixture for synthesizing conductive polymer nanoparticles

  • Zhoulu Wang
  • Jun Huang
  • Wei Huang
  • Hideki Yamamoto
  • Seigou KawaguchiEmail author
  • Masaru NagaiEmail author
Original Contribution
  • 46 Downloads

Abstract

Conductive polymer nanoparticles (NPs) exhibit a strong tendency to agglomerate because of strong interactions between the π electrons in the polymer. The use of a surfactant to control this agglomeration is problematic because doing so can adversely affect the characteristics of electronic devices to which the NPs are applied. By exploiting the affinity between the polymer and solvent, a modified reprecipitation method for controlling the agglomeration without the use of a surfactant was developed. The affinity between conductive polymer NPs comprising poly(3-hexylthiophene) and various solvent mixtures consisting of chloroform and ethanol was systematically tuned by varying the mixture composition. The increase in the poor solvent ratio led to the substantial increase in the agglomeration tendency. Adjusting the good solvent ratio to be within a narrow region, 70–77%, resulted in the formation of NPs with high stability and a high synthesis yield. This region corresponded to 1.4–1.7 of the relative energy difference between the polymer and solvent mixture as derived from the Hansen solubility parameters.

Graphical abstract

Agglomeration growth of NP size on time: Correlation with relative energy difference (RED) of mixed solvents.

Keywords

Conductive polymers Polymer nanoparticles Hansen solubility parameters Agglomeration Mixed solvents 

Abbreviations

NP

Nanoparticle

P3HT

Poly(3-hexylthiophene)

CF

Chloroform

EA

Ethanol

HSP

Hansen solubility parameter

RED

Relative energy difference

DLS

Dynamic light scattering

SEM

Scanning electron microscope

Notes

Funding

This study was supported by the National Natural Science Foundation of China (21304047), the Natural Science Foundation of Jiangsu Province (BK20151533), the Research Fund for the Doctoral Program of Higher Education (20133221120015), the Postgraduate Innovation Foundation of Jiangsu Province (2014, KYZZ_0226) and the Primary Research & Development Plan of Jiangsu Province (BE2016183).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4418_MOESM1_ESM.pdf (324 kb)
ESM 1 (PDF 324 kb)

References

  1. 1.
    Wu C, Bull B, Szymanski C, Christensen K, McNeill J (2008) Multicolor conjugated polymer dots for biological fluorescence imaging. ACS Nano 2:2415–2423CrossRefGoogle Scholar
  2. 2.
    Han X, Bag M, Gehan TS, Venkataraman D, Maroudas D (2015) Analysis of charge transport and device performance in organic photovoltaic devices with active layers of self-assembled nanospheres. J Phys Chem C 119:25826–25839CrossRefGoogle Scholar
  3. 3.
    Gärtner S, Christmann M, Sankaran S, Röhm H, Prinz EM, Penth F, Pütz A, Türeli AE, Penth B, Baumstümmler B, Colsmann A (2014) Eco-friendly fabrication of 4% efficient organic solar cells from surfactant-free P3HT:ICBA nanoparticle dispersions. Adv Mater 26:6653–6657CrossRefGoogle Scholar
  4. 4.
    Millstone JE, Kavulak DFJ, Woo CH, Holcombe TW, Westling EJ, Briseno AL, Toney MF, Fréchet JMJ (2010) Synthesis, properties, and electronic applications of size-controlled poly(3-hexylthiophene) nanoparticles. Langmuir 26:13056–13061CrossRefGoogle Scholar
  5. 5.
    Wu CF, McNeill J (2008) Swelling-controlled polymer phase and fluorescence properties of polyfluorene nanoparticles. Langmuir 24:5855–5861CrossRefGoogle Scholar
  6. 6.
    Nakanishi H, Katagi H (1998) Microcrystals of polydiacetylene derivatives and their linear and nonlinear optical properties. Supramol Sci 5:289–295CrossRefGoogle Scholar
  7. 7.
    Potai R, Traiphol R (2013) Controlling chain organization and photophysical properties of conjugated polymer nanoparticles prepared by reprecipitation method: the effect of initial solvent. J Colloid Interface Sci 403:58–66CrossRefGoogle Scholar
  8. 8.
    Renna LA, Boyle CJ, Gehan TS, Venkataraman D (2015) Polymer nanoparticle assemblies: a versatile route to functional mesostructures. Macromolecules 48:6353–6368CrossRefGoogle Scholar
  9. 9.
    Nakanishi H, Oikawa H (2003) Reprecipitation method for organic nanocrystals. In: Masuhara H, Nakanishi H, Sasaki K (eds) Single organic nanoparticles. Springer, BerlinGoogle Scholar
  10. 10.
    Kamogawa K, Akatsuka H, Matsumoto M, Yokoyama S, Sakai T, Sakai H, Abe M (2001) Surfactant-free O/W emulsion formation of oleic acid and its esters with ultrasonic dispersion. Colloids Surf A Physicochem Eng Asp 180:41–53CrossRefGoogle Scholar
  11. 11.
    Nagai M, Huang J, Cui D, Wang Z, Huang W (2017) Two-step reprecipitation method with size and zeta potential controllability for synthesizing semiconducting polymer nanoparticles. Colloid Polym Sci 295:1153–1164CrossRefGoogle Scholar
  12. 12.
    Hansen CM (2007) Hansen solubility parameters-a user’s hand-book. CRC Press, Boca RatonCrossRefGoogle Scholar
  13. 13.
    Hansen CM, Skaarup K (1967) The three dimensional solubility parameter — key to paint component affinities II. J Paint Technol 39:511–514Google Scholar
  14. 14.
    Hernandez Y, Lotya M, Rickard D, Bergin SD, Coleman JN (2010) Measurement of multicomponent solubility parameters for graphene facilitates solvent discovery. Langmuir 26:3208–3213CrossRefGoogle Scholar
  15. 15.
    Bergin SD, Sun Z, Rickard D, Streich PV, Hamilton JP, Coleman JN (2009) Multicomponent solubility parameters for single-walled carbon nanotube−solvent mixtures. ACS Nano 3:2340–2350CrossRefGoogle Scholar
  16. 16.
    Wieneke JU, Kommoß B, Gaer O, Prykhodko I, Ulbricht M (2012) Systematic investigation of dispersions of unmodified inorganic nanoparticles in organic solvents with focus on the Hansen solubility parameters. Ind Eng Chem Res 51:327–334CrossRefGoogle Scholar
  17. 17.
    Arita T, Ueda Y, Minami K, Naka T, Adschiri T (2010) Dispersion of fatty acid surface modified ceria nanocrystals in various organic solvents. Ind Eng Chem Res 49:1947–1952CrossRefGoogle Scholar
  18. 18.
    Gårdebjer S, Andersson M, Engström J, Restorp P, Persson M, Larssona A (2016) Using Hansen solubility parameters to predict the dispersion of nano-particles in polymeric films. Polym Chem 7:1756–1764CrossRefGoogle Scholar
  19. 19.
    Chang M, Choi D, Fu B, Reichmanis E (2013) Solvent based hydrogen bonding: impact on poly(3-hexylthiophene) nanoscale morphology and charge transport characteristics. ACS Nano 7:5402–5413CrossRefGoogle Scholar
  20. 20.
    Castillo ALM, Sanchez JFF, Carretero AS, Gutierrez AF (2010) Micrometer and submicrometer particles prepared by precipitation polymerization: thermodynamic model and experimental evidence of the relation between Flory’s parameter and particle size. Macromolecules 43:5804–5813CrossRefGoogle Scholar
  21. 21.
    Bicudo RCS, Santana MHA (2012) Effects of organic solvents on hyaluronic acid nanoparticles obtained by precipitation and chemical crosslinking. J Nanosci Nanotechnol 12:1–9CrossRefGoogle Scholar
  22. 22.
    Machui F, Langner S, Zhu X, Abbott S, Brabec CJ (2012) Determination of the P3HT:PCBM solubility parameters via a binary solvent gradient method: impact of solubility on the photovoltaic performance. Sol Energy Mater Sol Cells 100:138–146CrossRefGoogle Scholar
  23. 23.
    Shimizu H (2008) Preparation and characterization of water self-dispersible poly(3-hexylthiophene) particles. Polym J 40:33–36CrossRefGoogle Scholar
  24. 24.
    Kruyt HR (1952) Colloid science. Elsevier, AmsterdamGoogle Scholar
  25. 25.
    Higashitani K, Matsuno Y (1979) Rapid Brownian coagulation of colloidal dispersions. J Chem Eng Jpn 12:460–465CrossRefGoogle Scholar
  26. 26.
    Woodcock LV (1985) Proceeding of a Workshop held at Zentrum fur Interdisziplinare Forschung Unversity Bielefield, Th. Dorfmuller, Williams G (ed)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University (NanjingTech)NanjingPeople’s Republic of China
  2. 2.Department of Chemical, Energy and Environmental EngineeringKansai UniversitySuitaJapan
  3. 3.Department of Organic Materials ScienceYamagata UniversityYonezawaJapan

Personalised recommendations