Advertisement

Colloid and Polymer Science

, Volume 296, Issue 10, pp 1651–1656 | Cite as

Statistical viscoelastic and fracture mechanical properties of gel-cast ultra-oriented high-strength film threads of ultra-high-molecular-weight polyethylene

  • Yu. M. Boiko
  • V. A. Marikhin
  • L. P. Myasnikova
  • E. I. Radovanova
Original Contribution
  • 58 Downloads

Abstract

For the first time, the statistical distribution of Young’s modulus and of strain at break of ultra-high-molecular-weight polyethylene (UHMWPE) gel-cast highly oriented film threads have been investigated by employing the Weibull model. These have been produced by the multi-stage hot-zone drawing technique. It has been shown that the results of a large number of mechanical measurements for the two series of UHMWPE film threads drawn to an ultimate draw ratio (λ) of 120 from xerogels formed from 1.5% solutions of UHMWPE in decalin or paraffin oil (50 samples in each case) can be satisfactorily described in the framework of the standard Weibull distribution. The values of Weibull modulus and scale factor have been estimated for the two film threads series investigated. It has been found that the scatter in the experimental data depends on the solvent nature and the mechanical characteristic analysed.

Graphical abstract

Keywords

UHMWPE Gel technology Drawing Young’s modulus Strain at break Weibull statistics 

Notes

Acknowledgments

The authors thank Dr. O.A. Moskalyuk for the help with mechanical measurements.

Funding information

This work was supported in part by the Federal Agency of Scientific Organizations of the Russian Federation.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Marikhin VA, Myasnikova LP (1996) Structural basis of high-strength high-modulus polymers. In: Fakirov S (ed) Oriented polymer materials. Hüthig & Wepf Verlag-Zug, Heidelberg, pp 38–98CrossRefGoogle Scholar
  2. 2.
    Zhurkov SN (1965) Kinetic concept of the strength of solids. Int J Fract Mech 1:311–323Google Scholar
  3. 3.
    Boiko YM, Marikhin VA, Myasnikova LP, Moskalyuk OA, Radovanova EI (2017) Weibull statistics of tensile strength distribution of gel-cast ultra-oriented film threads of ultra-high-molecular-weight polyethylene. J Mater Sci 52:1727–1735.  https://doi.org/10.1007/s10853-016-0464-9 CrossRefGoogle Scholar
  4. 4.
    Marissen R, Wienke D, Homminga R, Bosman R, Veka KM, Huguet A (2016) Weibull statistics strength investigation of synthetic link chains made from ultra-strong polyethylene fibers. Mater Sci Appl 7:238–246.  https://doi.org/10.4236/msa.2016.75024 CrossRefGoogle Scholar
  5. 5.
    Weibull W (1951) A statistical distribution function of wide applicability. J Appl Mech 18:293–297Google Scholar
  6. 6.
    Tanaka F, Okabe T, Okuda H, Kinloch IA, Young RJ (2014) Factors controlling the strength of carbon fibres in tension. Compos A Appl Sci Manuf 57:88–94.  https://doi.org/10.1016/jcompositesa.2013.11.007 CrossRefGoogle Scholar
  7. 7.
    Baikova LG, Pesina TI, Kireenko MF, Tikhonova LV, Kurkjian CR (2015) Strength of optical silica fibres measured in liquid nitrogen. Tech Phys 60:869–872.  https://doi.org/10.1134/S1063784215060031 CrossRefGoogle Scholar
  8. 8.
    Wilson DM (1997) Statistical tensile strength of NextelTM 610 and NextelTM 720 fibres. J Mater Sci 32:2535–2542.  https://doi.org/10.1023/A:1018538030985 CrossRefGoogle Scholar
  9. 9.
    Sun G, Pang JHL, Zhou J, Zhang Y, Zhan Z, Zheng L (2012) A modified Weibull model for tensile strength distribution of carbon nanotube fibres with strain rate and size effects. Appl Phys Lett 101:131905.  https://doi.org/10.1063/1.4754709 CrossRefGoogle Scholar
  10. 10.
    Sullivan JD, Lauzon PH (1986) Experimental probability estimators for Weibull plots. J Mater Sci Lett 5:1245–1247.  https://doi.org/10.1007/BF01729379 CrossRefGoogle Scholar
  11. 11.
    Gurvich MR, Dibenedetto AT, Pegoretti A (1997) Evaluation of the statistical parameters of a Weibull distribution. J Mater Sci 32:3711–3716.  https://doi.org/10.1023/A:1018603118573 CrossRefGoogle Scholar
  12. 12.
    Pugno NM, Ruoff RS (2007) Nanoscale Weibull statistics for nanofibres and nanotubes. J Aerosp Eng 20:97–101.  https://doi.org/10.1063/1.2158491 CrossRefGoogle Scholar
  13. 13.
    Van der Zwaag S (1989) The concept of filament strength and the Weibull modulus. J Test Eval 17:292–298.  https://doi.org/10.1520/JTE11131J CrossRefGoogle Scholar
  14. 14.
    Bergman B (1984) On the estimation of the Weibull modulus. J Mater Sci Lett 3:689–692.  https://doi.org/10.1007/BF00719924 CrossRefGoogle Scholar
  15. 15.
    Trustrum K, Jayatilaka ADS (1979) On estimating the Weibull modulus for a brittle material. J Mater Sci 14:1080–1084.  https://doi.org/10.1007/BF00561290 CrossRefGoogle Scholar
  16. 16.
    Klein CA (2007) Characteristic tensile strength and Weibull shape parameter of carbon nanotubes. J Appl Phys 101:124909.  https://doi.org/10.1063/1.2749337 CrossRefGoogle Scholar
  17. 17.
    De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F (2010) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122.  https://doi.org/10.1016/j.compscitech.2009.09.013 CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Wang X, Pan N, Postle R (2002) Weibull analysis of the tensile behavior of fibres with geometrical irregularities. J Mater Sci 37:1401–1406.  https://doi.org/10.1023/A:1014580814803 CrossRefGoogle Scholar
  19. 19.
    Wu HF, Netravali AN (1992) Weibull analysis of strength-length relationships in single Nicalon SiC fibres. J Mater Sci 27:3318–3324.  https://doi.org/10.1007/BF01116031 CrossRefGoogle Scholar
  20. 20.
    Bazant ZP, Le J-L, Bazant MZ (2009) Scaling of strength and lifetime probability distributions of quasibrittle structures based on atomistic fracture mechanics. Proc Natl Acad Sci U S A 106:11484–11489.  https://doi.org/10.1073/pnas.0904797106 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bazant ZP, Pang S-D (2006) Mechanics-based statistics of failure risk of quasibrittle structures and size effect on safety factors. Proc Natl Acad Sci U S A 103:9434–9439.  https://doi.org/10.1073/pnas.0602684103 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Barber AH, Andrews R, Shaudler LS, Wagner HD (2005) On the tensile strength distribution of multiwalled carbon nanotubes. Appl Phys Lett 87:203106.  https://doi.org/10.1063/1.2130713 CrossRefGoogle Scholar
  23. 23.
    Roy A, Chakraborty S, Kundu SP, Basak RK, Majumber SB, Adhikari B (2012) Improvement in mechanical properties of jute fibres through mild alkali treatment as demonstrated by utilisation of the Weibull distribution model. Bioresour Technol 107:222–228.  https://doi.org/10.1016/j.biortech.2011.11.073 CrossRefPubMedGoogle Scholar
  24. 24.
    Jayatilaka ADeS, Trustrum K (1977) Statistical approach to brittle fracture. J Mater Sci 12:1426–1430.  https://doi.org/10.1007/BF00540858 CrossRefGoogle Scholar
  25. 25.
    Quinn JB, Quinn GD (2010) A practical and systematic review of Weibull statistics for reporting strengths of dental materials. Dent Mater 26:135–147.  https://doi.org/10.1016/j.dental.2009.09.006 CrossRefPubMedGoogle Scholar
  26. 26.
    Wang F, Shao J (2014) Modified Weibull distribution for analyzing the tensile strength of bamboo fibers. Polymers 6:3005–3018.  https://doi.org/10.3390/polym6123005 CrossRefGoogle Scholar
  27. 27.
    Pang S-D, Bazant ZP, Le J-L (2008) Statistics of strength of ceramics: finite weakest-link model and necessity of zero threshold. Int J Fract 154:131–145.  https://doi.org/10.1007/s10704-009-9317-8 CrossRefGoogle Scholar
  28. 28.
    Boiko YM (2017) Weibull statistics of lap-shear strength development at partially self-healed polymer-polymer interfaces: a long-term contact. Colloid Polym Sci 295:1993–1999.  https://doi.org/10.1007/s00396-017-4174-x CrossRefGoogle Scholar
  29. 29.
    Boiko YM (2017) Weibull statistics of lap-shear strength development at partially self-healed polymer-polymer interfaces: a short-term contact. Colloid Polym Sci 295:647–653.  https://doi.org/10.1007/s00396-017-4048-2 CrossRefGoogle Scholar
  30. 30.
    Boiko YM (2016) Statistics of strength distribution upon the start of adhesion between glassy polymers. Colloid Polym Sci 294:1727–1732.  https://doi.org/10.1007/s00396-016-3934-3 CrossRefGoogle Scholar
  31. 31.
    Zok FW (2017) On weakest link theory and Weibull statistics. J Am Ceram Soc 100:1265–1268.  https://doi.org/10.1111/jace.14665 CrossRefGoogle Scholar
  32. 32.
    Rastogi S, Yao Y, Ronca S, Bos J, van der Eem J (2011) Unprecedented high-modulus high-strength tapes and films of ultrahigh molecular weight polyethylene via solvent-free route. Macromolecules 44:5558–5568.  https://doi.org/10.1021/ma200667m CrossRefGoogle Scholar
  33. 33.
    Boiko YM, Kovriga VV (1993) Relaxation behavior of polyethylene oriented by various techniques. Int J Polym Mater 22:209–217.  https://doi.org/10.1080/00914039308012076 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yu. M. Boiko
    • 1
  • V. A. Marikhin
    • 1
  • L. P. Myasnikova
    • 1
  • E. I. Radovanova
    • 1
  1. 1.Laboratory of Physics of StrengthIoffe Physical-Technical InstituteSt. PetersburgRussia

Personalised recommendations