Colloid and Polymer Science

, Volume 296, Issue 10, pp 1627–1633 | Cite as

The nucleation effect of self-dispersed β-nucleating agent in ethylene-propylene block copolymerized polypropylene

  • Yaoding Yang
  • Wenxue Zhang
  • Wei Qin
  • Zhong Xin
  • Shicheng Zhao
  • Lan Chen
  • Shuai Zhou
Original Contribution


The problem of agglomeration and poor dispersion results in the low nucleation efficiency of β-nucleating agent (β-NA) in polypropylene. In this paper, a self-dispersed β-NA (Adi-Zn) was prepared in situ (IS) by adding adipic acid and zinc oxide at equimolar ratio in PPB powder during extrusion. The results showed that the nucleation efficiency of Adi-Zn (IS) was better than the direct addition of Adi-Zn. The impact strength of PPB nucleated with 0.05 wt% Adi-Zn (IS) was 25% higher than that with the same additive amount of Adi-Zn. Also, the β-crystal content (kβ value) almost reached 1. Crystallization temperature of PPB nucleated with Adi-Zn (IS) was slightly increased compared with that of Adi-Zn. The reaction mechanism of Adi-Zn (IS) was explored by Fourier transform infrared spectroscopy (FTIR). The results showed that adipic acid and zinc oxide generated zinc adipate, and zinc adipate acted as β-NA during the crystallization of PPB. By means of energy dispersive X-ray (EDX) analysis and transmission electron microscopy (TEM), the reason for the good dispersion of in situ synthetic method was confirmed, which further leads to good nucleation efficiency of Adi-Zn (IS).


In situ Self-dispersed Nucleation efficiency β-Nucleating agent 


Funding information

This work was supported by the National Key R&D Program of China (2016YFB0302201), National Natural Science Foundation of China (Grants 21476085 and 21606084), and the Fundamental Research Funds for the Central Universities (222201717025).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Zhao S, Xu N, Xin Z, Jiang C (2012) A novel highly efficient β-nucleating agent for isotactic polypropylene[J]. J Appl Polym Sci 123(1):108–117CrossRefGoogle Scholar
  2. 2.
    Blomenhofer M, Ganzleben S, Doris Hanft A et al (2005) “Designer” nucleating agents for polypropylene[J]. Macromolecules 38(9):3688–3695CrossRefGoogle Scholar
  3. 3.
    Zhao S, Cai Z, Xin Z (2008) A highly active novel β-nucleating agent for isotactic polypropylene[J]. Polymer 49(11):2745–2754CrossRefGoogle Scholar
  4. 4.
    Zhao S, Xin Z (2010) Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene[J]. J Polym Sci B Polym Phys 48(6):653–665CrossRefGoogle Scholar
  5. 5.
    Zhao SC, Gong HZ, Yu X et al (2016) A highly active and selective beta-nucleating agent for isotactic polypropylene and crystallization behavior of beta-nucleated isotactic polypropylene under rapid cooling[J]. J Appl Polym Sci 133(32):8CrossRefGoogle Scholar
  6. 6.
    Uchiyama Y, Iwasaki S, Ueoka C et al (2010) Molecular orientation and mechanical anisotropy of polypropylene sheet containing N,N′-dicyclohexyl6-naphthalenedicarboxamide[J]. J Polym Sci Part B Polym Phys 47(4):424–433CrossRefGoogle Scholar
  7. 7.
    Guo M, Zhang Y, Li J, Pan G, Yan H, Luo Y, Liu Y (2014) Ultrafine dispersion of a phosphate nucleating agent in a polypropylene matrix via the microemulsion method[J]. RSC Adv 4(23):11931–11938CrossRefGoogle Scholar
  8. 8.
    Urushihara T, Okada K, Watanabe K, Toda A, Kawamoto N, Hikosaka M (2009) Acceleration mechanism in critical nucleation of polymers by epitaxy of nucleating agent[J]. Polym J 41(3):228–236CrossRefGoogle Scholar
  9. 9.
    Urushihara T, Okada K, Watanabe K et al (2006) Acceleration mechanism of nucleation of polymers by nano-sizing of nucleating agent[J]. Polym J 39(1):55–64CrossRefGoogle Scholar
  10. 10.
    Zhang G, Xin Z, Yu J, Gui QD, Wang SY (2003) Nucleating efficiency of organic phosphates in polypropylene[J]. J Macromol Sci B 42(3–4):467–478CrossRefGoogle Scholar
  11. 11.
    Yi QF, Wen XJ, Dong JY, Han CC (2008) A novel effective way of comprising a β-nucleating agent in isotactic polypropylene (i-PP): polymerized dispersion and polymer characterization[J]. Polymer 49(23):5053–5063CrossRefGoogle Scholar
  12. 12.
    Yuan W, Guo M, Miao Z et al (2010) Influence of maleic anhydride grafted polypropylene on the dispersion of clay in polypropylene|[sol]|clay nanocomposites[J]. Polym J 42(9):3809–3814CrossRefGoogle Scholar
  13. 13.
    Kotek J, Kelnar I, Synková H et al (2010) β-Polypropylene/wood flour composites: effects of specific β-nucleation and coupling agent on mechanical behavior[J]. J Appl Polym Sci 103(1):506–511CrossRefGoogle Scholar
  14. 14.
    Li B, Hu GH, Cao GP, Liu T, Zhao L, Yuan WK (2008) Effect of supercritical carbon dioxide-assisted nano-scale dispersion of nucleating agents on the crystallization behavior and properties of polypropylene[J]. J Supercrit Fluids 44(3):446–456CrossRefGoogle Scholar
  15. 15.
    Gutiérrez C, Garcia MT, Mencía R, Garrido I, Rodríguez JF (2016) Clean preparation of tailored microcellular foams of polystyrene using nucleating agents and supercritical CO2[J]. J Mater Sci 51(10):4825–4838CrossRefGoogle Scholar
  16. 16.
    Libster D, Aserin A, Garti N (2006) A novel dispersion method comprising a nucleating agent solubilized in a microemulsion, in polymeric matrix I. Dispersion method and polymer characterization[J]. J Colloid Interface Sci 299(1):172–181CrossRefPubMedGoogle Scholar
  17. 17.
    Libster D, Aserin A, Garti N (2006) A novel dispersion method comprising a nucleating agent solubilized in a microemulsion, in polymeric matrix II. Microemulsion characterization[J]. J Colloid Interface Sci 302(1):322–329CrossRefPubMedGoogle Scholar
  18. 18.
    Garbarczyk J, Sterzynski T, Paukszta D (1989) Influence of additives on the structure and properties of polymers. 4. Study of phase transition in isotactic polypropylene by synchrotron radiation[J]. Polymer Communications (Guildford) 30(5):153–157Google Scholar
  19. 19.
    Leugering VHJ (1967) Einfluß der kristallstruktur und der überstruktur auf einige eigenschaften von polypropylen †[J]. Die Makromolekulare Chemie 109(1):204–216CrossRefGoogle Scholar
  20. 20.
    And JV, Menyhárd A (2007) Effect of solubility and nucleating duality of N, N′-dicyclohexyl-2,6-naphthalenedicarboxamide on the supermolecular structure of isotactic polypropylene[J]. Macromolecules 40(40):2422–2431Google Scholar
  21. 21.
    Feng J, Chen M, Huang Z et al (2010) Effects of mineral additives on the β-crystalline form of isotactic polypropylene[J]. J Appl Polym Sci 85(8):1742–1748CrossRefGoogle Scholar
  22. 22.
    Zhang N, Zhang Q, Wang K, Deng H, Fu Q (2012) Combined effect of Î2-nucleating agent and multi-walled carbon nanotubes on polymorphic composition and morphology of isotactic polypropylene[J]. J Therm Anal Calorim 107(2):733–743CrossRefGoogle Scholar
  23. 23.
    Yamaguchi M, Fukui T, Okamoto K, Sasaki S, Uchiyama Y, Ueoka C (2009) Anomalous molecular orientation of isotactic polypropylene sheet containing,′-dicyclohexyl-2,6-naphthalenedicarboxamide[J]. Polymer 50(6):1497–1504CrossRefGoogle Scholar
  24. 24.
    Zhang X, Shi G (1994) Effect of converting the crystalline form from α to β on the mechanical properties of ethylene/propylene random and block copolymers[J]. Polymer 35(23):5067–5072CrossRefGoogle Scholar
  25. 25.
    Menyhárd A, Varga J, Molnár G (2006) Comparison of different nucleators for isotactic polypropylene, characterisation by DSC and temperature-modulated DSC (TMDSC) measurements[J]. J Therm Anal Calorim 83(3):625–630CrossRefGoogle Scholar
  26. 26.
    Zhao S, Xin Z (2010) Crystallization kinetics of isotactic polypropylene nucleated with organic dicarboxylic acid salts[J]. J Appl Polym Sci 112(3):1471–1480CrossRefGoogle Scholar
  27. 27.
    Yang Y, Xin Z, Zhao S, Shi Y, Zhou S, Zhou J, Ye C (2017) Nucleation effects of zinc adipate as β-nucleating agent in ethylene-propylene block copolymerized polypropylene[J]. J Polym Res 24(9):143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Yaoding Yang
    • 1
  • Wenxue Zhang
    • 2
  • Wei Qin
    • 1
  • Zhong Xin
    • 1
  • Shicheng Zhao
    • 1
  • Lan Chen
    • 1
  • Shuai Zhou
    • 1
  1. 1.Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, Department of Product EngineeringEast China University of Science and TechnologyShanghaiPeople’s Republic of China
  2. 2.Lanzhou Petrochemical Research Center, PetroChinaLanzhouPeople’s Republic of China

Personalised recommendations