Colloid and Polymer Science

, Volume 296, Issue 9, pp 1523–1532 | Cite as

Preparation of stable, transparent superhydrophobic film via one step one pot sol-gel method

  • Ayse Senem Kaya Topcu
  • Edanur Erdogan
  • Ugur CengizEmail author
Original Contribution


Herein, we report a single step and a one pot by using spin coating method for the preparation of optically transparent superhydrophobic TEOS-silica composite films. Silica sols were prepared by keeping the molar ratio of TEOS/CH3OH/H2O (0.1 M NH4F) constant at 1:33.15:6.06, respectively. Increasing the silica content of the coating solution resulted in decreasing the transparency of the composite films from 93 to 84% (in references to 93% transmission defined by a plain glass substrate). The static water and hexadecane contact angle of transparent surfaces were found to vary between 65° and 170° (sliding angle < 3°) and 45° to 5° (sliding angle = 15°) depending on the silica content. The stability of the surface remained nearly constant for several months under stored at ambient conditions. The mechanical stability of the prepared of TEOS-silica composite was tested by scratching and adhesive tape test. For the chemical test applications, NaOH, HCl, and H2SO4 were used for the TEOS-silica composite films.


Transparent Thin films Superhydrophobic TEOS Silica 



The authors gratefully acknowledge the financial support from The Scientific and Technological Research Council of Turkey (TUBITAK) under the project “Fabrication of self cleaning oil repellent glass and ceramic surfaces” (Project No. MAG-114M475). The authors would like to thank Central Laboratory of Canakkale Onsekiz Mart University for providing SEM, AFM, and FTIR.

Compliance with ethical standards

This work complies with the ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2018_4377_MOESM1_ESM.docx (1.8 mb)
ESM 1 (DOCX 1819 kb)


  1. 1.
    Erbil HY (2006) Surface chemistry of solid and liquid interfaces. Blackwell Publishing, OxfordGoogle Scholar
  2. 2.
    Gao X, Jiang L (2004) Water-repellent legs of water striders. Nature 432:36–36CrossRefPubMedGoogle Scholar
  3. 3.
    Zhu Y, Zhang J, Zheng Y, Huang Z, Feng L, Jiang L (2006) Stable, Superhydrophobic, and conductive polyaniline/polystyrene films for corrosive environments. Adv Funct Mater 16(4):568–574CrossRefGoogle Scholar
  4. 4.
    Lai Y, Tang Y, Gong J, Gong D, Chi L, Lin C, Chen Z (2012) Transparent superhydrophobic/superhydrophilic TiO2-based coatings for self-cleaning and anti-fogging. J Mater Chem 22(15):7420–7426CrossRefGoogle Scholar
  5. 5.
    Shirtcliffe NJ, McHale G, Newton MI (2011) The superhydrophobicity of polymer surfaces: recent developments. J Polym Sci B Polym Phys 49(17):1203–1217CrossRefGoogle Scholar
  6. 6.
    Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed Engl 43(15):2012–2014CrossRefPubMedGoogle Scholar
  7. 7.
    Cortese B, Caschera D, Federici F, Ingo GM, Gigli G (2014) Superhydrophobic fabrics for oil–water separation through a diamond like carbon (DLC) coating. J Mater Chem A 2(19):6781–6789CrossRefGoogle Scholar
  8. 8.
    Yao X, Song Y, Jiang L (2011) Applications of bio-inspired special wettable surfaces. Adv Mater 23(6):719–734CrossRefPubMedGoogle Scholar
  9. 9.
    Song W, Lima AC, Mano JF (2010) Bioinspired methodology to fabricate hydrogel spheres for multi-applications using superhydrophobic substrates. Soft Matter 6(23):5868–5871CrossRefGoogle Scholar
  10. 10.
    Celia E, Darmanin T, de Givenchy ET, Amigoni S, Guittard F (2013) Recent advances in designing superhydrophobic surfaces. J Colloid Interf Sci 402:1–18CrossRefGoogle Scholar
  11. 11.
    Celestini F, Kofman R, Noblin X, Pellegrin M (2010) Water jet rebounds on hydrophobic surfaces: a first step to jet micro-fluidics. Soft Matter 6(23):5872CrossRefGoogle Scholar
  12. 12.
    Liu K, Yao X, Jiang L (2010) Recent developments in bio-inspired special wettability. Chem Soc Rev 39(8):3240–3255CrossRefPubMedGoogle Scholar
  13. 13.
    Erbil HY, Demirel AL, Avci Y, Mert O (2003) Transformation of a simple plastic into a superhydrophobic surface. Science 299(5611):1377–1380CrossRefPubMedGoogle Scholar
  14. 14.
    Xie QD, Xu J, Feng L, Jiang L, Tang WH, Luo XD, Han CC (2004) Facile creation of a super-amphiphobic coating surface with bionic microstructure. Adv Mater 16(4):302–305CrossRefGoogle Scholar
  15. 15.
    Wang Y, Liu ZM, Han BX, Sun ZY, Zhang JL, Sun DH (2005) Phase-separation-induced micropatterned polymer surfaces and their applications. Adv Funct Mater 15(4):655–663CrossRefGoogle Scholar
  16. 16.
    Li SH, Huang JY, Chen Z, Chen GQ, Lai YK (2017) A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. J Mater Chem A 5(1):31–55CrossRefGoogle Scholar
  17. 17.
    Çağlar A, Yıldırım M, Cengiz U, Kaya İ (2016) Superhydrophobic-electrochromic PEDOT/PFHP bilayer surfaces. Thin Solid Films 619:187–194CrossRefGoogle Scholar
  18. 18.
    Tuteja A, Choi W, Ma ML, Mabry JM, Mazzella SA, Rutledge GC, McKinley GH, Cohen RE (2007) Designing superoleophobic surfaces. Science 318(5856):1618–1622CrossRefPubMedGoogle Scholar
  19. 19.
    Steele A, Bayer I, Loth E (2009) Inherently Superoleophobic nanocomposite coatings by spray atomization. Nano Lett 9(1):501–505CrossRefPubMedGoogle Scholar
  20. 20.
    Darmanin T, Guittard F, Amigoni S, de Givenchy ET, Noblin X, Kofman R, Celestini F (2011) Superoleophobic behavior of fluorinated conductive polymer films combining electropolymerization and lithography. Soft Matter 7(3):1053–1057CrossRefGoogle Scholar
  21. 21.
    Hosono E, Fujihara S, Honma I, Zhou HS (2005) Superhydrophobic perpendicular nanopin film by the bottom-up process. J Am Chem Soc 127(39):13458–13459CrossRefPubMedGoogle Scholar
  22. 22.
    Bravo J, Zhai L, Wu ZZ, Cohen RE, Rubner MF (2007) Transparent superhydrophobic films based on silica nanoparticles. Langmuir 23(13):7293–7298CrossRefPubMedGoogle Scholar
  23. 23.
    Meng LY, Park SJ (2012) Effect of growth of graphite nanofibers on superhydrophobic and electrochemical properties of carbon fibers. Mater Chem Phys 132(2–3):324–329CrossRefGoogle Scholar
  24. 24.
    Lee EJ, Jung CH, Hwang IT, Choi JH, Cho SO, Nhos YC (2011) Surface morphology control of polymer films by Electron irradiation and its application to Superhydrophobic surfaces. Acs Appl Mater Inter 3(8):2988–2993CrossRefGoogle Scholar
  25. 25.
    Kashaninejad N, Chan WK, Nguyen NT (2012) Eccentricity effect of micropatterned surface on contact angle. Langmuir 28(10):4793–4799CrossRefPubMedGoogle Scholar
  26. 26.
    Nakajima A, Abe K, Hashimoto K, Watanabe T (2000) Preparation of hard super-hydrophobic films with visible light transmission. Thin Solid Films 376:140–143CrossRefGoogle Scholar
  27. 27.
    Shang HM, Wang Y, Limmer SJ, Chou TP, Takahashi K, Cao GZ (2005) Optically transparent superhydrophobic silica-based films. Thin Solid Films 472(1–2):37–43CrossRefGoogle Scholar
  28. 28.
    Wu LYL, Soutar AM, Zeng XT (2005) Increasing hydrophobicity of sol–gel hard coatings by chemical and morphological modifications. Surf Coat Technol 198(1–3):420–424CrossRefGoogle Scholar
  29. 29.
    Hou H, Chen Y (2007) Preparation of super-hydrophobic silica films with visible light transmission using phase separation. J Sol-Gel Sci Technol 43(1):53–57CrossRefGoogle Scholar
  30. 30.
    Chang K-C, Chen Y-K, Chen H (2008) Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value. Surf Coat Technol 202(16):3822–3831CrossRefGoogle Scholar
  31. 31.
    Latthe SS, Imai H, Ganesan V, Rao AV (2009) Superhydrophobic silica films by sol-gel co-precursor method. Appl Surf Sci 256(1):217–222CrossRefGoogle Scholar
  32. 32.
    Latthe SS, Imai H, Ganesan V, Kappenstein C, Rao AV (2010) Optically transparent superhydrophobic TEOS-derived silica films by surface silylation method. J Sol-Gel Sci Technol 53(2):208–215CrossRefGoogle Scholar
  33. 33.
    Parale VG, Mahadik DB, Kavale MS, Mahadik SA, Rao AV, Mullens S (2013) Sol–gel preparation of PTMS modified hydrophobic and transparent silica coatings. J Porous Mater 20(4):733–739CrossRefGoogle Scholar
  34. 34.
    Wang F, Wang XF, Xie AJ, Shen YH, Duan W, Zhang Y, Li JL (2012) A simple method for preparation of transparent hydrophobic silica-based coatings on different substrates. Appl Phys a-Mater 106(1):229–235CrossRefGoogle Scholar
  35. 35.
    Lin JB, Chen HL, Fei T, Liu C, Zhang JL (2013) Highly transparent and thermally stable superhydrophobic coatings from the deposition of silica aerogels. Appl Surf Sci 273:776–786CrossRefGoogle Scholar
  36. 36.
    Wang N, Xiong DS (2014) Influence of trimethylethoxysilane on the wetting behavior, humidity resistance and transparency of tetraethylorthosilicate based films. Appl Surf Sci 292:68–73CrossRefGoogle Scholar
  37. 37.
    Nakajima A, Hashimoto K, Watanabe T (2000) Transparent Superhydrophobic thin films with self-cleaning properties. Langmuir 16:7044–7047CrossRefGoogle Scholar
  38. 38.
    Fresnais J, Chapel JP, Poncin-Epaillard F (2006) Synthesis of transparent superhydrophobic polyethylene surfaces. Surf Coat Technol 200(18–19):5296–5305CrossRefGoogle Scholar
  39. 39.
    Yang J, Zhang ZZ, Men XH, Xu XH (2009) Fabrication of stable, transparent and superhydrophobic nanocomposite films with polystyrene functionalized carbon nanotubes. Appl Surf Sci 255(22):9244–9247CrossRefGoogle Scholar
  40. 40.
    He ZK, Ma M, Lan XR, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2011) Fabrication of a transparent superamphiphobic coating with improved stability. Soft Matter 7(14):6435–6443CrossRefGoogle Scholar
  41. 41.
    Yabu H, Shimomura M (2005) Single-step fabrication of transparent Superhydrophobic porous polymer films. Chem Matter 17:5231–5234CrossRefGoogle Scholar
  42. 42.
    Guo C, Feng L, Zhai J, Wang G, Song Y, Jiang L, Zhu D (2004) Large-area fabrication of a nanostructure-induced hydrophobic surface from a hydrophilic polymer. Chemphyschem 5(5):750–753CrossRefPubMedGoogle Scholar
  43. 43.
    Cao Q, Li L, Huang F, Zuo C (2017) Ion-specific effects on the elongation dynamics of a Nanosized water droplet in applied electric fields. Langmuir 33(1):428–437CrossRefPubMedGoogle Scholar
  44. 44.
    Chen XL, Liang YN, Tang XZ, Shen WM, Hu X (2017) Additive-free poly (vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption. Chem Eng J 308:18–26CrossRefGoogle Scholar
  45. 45.
    Vogler EA (1998) Structure and reactivity of water at biomaterial surfaces. Adv Colloid Interfac 74:69–117CrossRefGoogle Scholar
  46. 46.
    Caglar A, Cengiz U, Yildirim M, Kaya I (2015) Effect of deposition charges on the wettability performance of electrochromic polymers. Appl Surf Sci 331:262–270CrossRefGoogle Scholar
  47. 47.
    Budunoglu H, Yildirim A, Bayindir M (2012) Flexible and mechanically stable antireflective coatings from nanoporous organically modified silica colloids. J Mater Chem 22(19):9671–9677CrossRefGoogle Scholar
  48. 48.
    Chen Z, Wu LYL, Chwa E, Tham O (2008) Scratch resistance of brittle thin films on compliant substrates. Mat Sci Eng a-Struct 493(1–2):292–298CrossRefGoogle Scholar
  49. 49.
    Paints and Varnishes: Determination of Film Hardness by Pencil Test, ISO (1998)Google Scholar
  50. 50.
    Yoldas BE (1984) Modification of polymer-gel structure. J Non-Cryst Solids 63:145–154CrossRefGoogle Scholar
  51. 51.
    Beganskiene A, Sırutkaitis V, Kurtinaitiene M, Juskenas R, Kareiva A (2004) FTIR, TEM and NMR Iinvestigations of Stöber silica nanoparticles. Materials Science (Medziagotyra) 10:287–290Google Scholar
  52. 52.
    Rao AV, Kalesh RR, Amalnerkar DP, Seth T (2003) Synthesis and characterization of hydrophobic TMES/TEOSBased silica aerogels. J Porous Mater 10:23–29CrossRefGoogle Scholar
  53. 53.
    Guillaumee M, Liley M, Pugin P, Stanleyel RP (2008) Scattering of light by a single layer of randomly packed dielectric microspheres giving color effects in transmission. Opt Express 16(3):1440–1447CrossRefPubMedGoogle Scholar
  54. 54.
    Cho KL, Liaw II, Wu AHF, Lamb RN (2010) Influence of roughness on a transparent Superhydrophobic coating. J Phys Chem C 114:11228–11233CrossRefGoogle Scholar
  55. 55.
    Park J, Urata C, Masheder B, Cheng DF, Hozumi A (2013) Long perfluoroalkyl chains are not required for dynamically oleophobic surfaces. Green Chem 15(1):100–104CrossRefGoogle Scholar
  56. 56.
    Deng X, Mammen L, Zhao YF, Lellig P, Mullen K, Li C, Butt HJ, Vollmer D (2011) Transparent, thermally stable and mechanically robust Superhydrophobic surfaces made from porous silica capsules. Adv Mater 23(26):2962–2965CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ayse Senem Kaya Topcu
    • 1
  • Edanur Erdogan
    • 1
  • Ugur Cengiz
    • 1
    • 2
    Email author
  1. 1.Department of Bioengineering & Materials Science EngineeringCanakkale Onsekiz Mart UniversityCanakkaleTurkey
  2. 2.Department of Chemical Engineering, Faculty of EngineeringCanakkale Onsekiz Mart UniversityCanakkaleTurkey

Personalised recommendations