Advertisement

Colloid and Polymer Science

, Volume 296, Issue 8, pp 1379–1385 | Cite as

Colloidal fibers as structurant for worm-like micellar solutions

  • Giuliano Zanchetta
  • Shadi Mirzaagha
  • Vincenzo Guida
  • Fabio Zonfrilli
  • Marco Caggioni
  • Nino Grizzuti
  • Rossana Pasquino
  • Veronique Trappe
Original Contribution
  • 44 Downloads

Abstract

We investigate the rheological properties of a simplified version of a liquid detergent composed of an aqueous solution of the linear alkylbenzene sulphonate (LAS) surfactant, in which a small amount of fibers made of hydrogenated castor oil (HCO) is dispersed. At the concentration typically used in detergents, LAS is in a worm-like micellar phase exhibiting a Maxwellian behavior. The presence of HCO fibers provides elastic properties, such that the system behaves as a simple Zener body, mechanically characterized by a parallel connection of a spring and a Maxwell element. Despite this apparent independence of the contributions of the fibers and the surfactant medium to the mechanical characteristics of the system, we find that the low frequency modulus increases with increasing LAS concentration. This indicates that LAS induces attractive interactions among the HCO fibers, resulting in the formation of a stress-bearing structure that withstands shear at HCO concentrations, where the HCO fibers in the absence of attractive interactions would not sufficiently overlap to provide stress-bearing properties to the system.

Keywords

Colloidal fiber Gel Depletion Worm-like micelle Rheology 

Notes

Acknowledgements

We thank P&G for the materials and for financial support to G.Z. and S.M..

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Larson RG (1999) The structure and rheology of complex fluids. Oxford University Press, New YorkGoogle Scholar
  2. 2.
    Israelachvili JN, Mitchell DJ, Ninham BW (1975) Theory of self-assembly of hydrocarbon amphiphiles. J Chem Soc Faraday Trans 2 72:1525–1568CrossRefGoogle Scholar
  3. 3.
    Gaudino D, Pasquino R, Grizzuti N (2015) Adding salt to a surfactant solution: linear rheological response of the resulting morphologies. J Rheol 59:1363–1375CrossRefGoogle Scholar
  4. 4.
    Solomon MJ, Spicer PT (2010) Microstructural regimes of colloidal rod suspensions, gels, and glasses. Soft Matter 6:1391–1400CrossRefGoogle Scholar
  5. 5.
    Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira PA, Weitz DA (2014) Scaling of F-actin network rheology to probe single filament elasticity and dynamics. Phys Rev Lett 93:188102-1-188102-4Google Scholar
  6. 6.
    Broedersz CP, MacKintosh FC (2014) Modeling semiflexible polymer networks. Rev Mod Phys 86:995–1036CrossRefGoogle Scholar
  7. 7.
    Ezzellt SA, McCormick CL (1992) Water-soluble copolymers. 39. Synthesis and solution properties of associative acrylamido copolymers with pyrenesulfonamide fluorescence labels. Macromolecules 25:1881–1886CrossRefGoogle Scholar
  8. 8.
    García-Ochoa F, Santos VE, Casas JA, Gómez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18:549–579CrossRefGoogle Scholar
  9. 9.
    Karlsona L, Joabssonb F, Thuressonb K (2000) Phase behavior and rheology in water and in model paint formulations thickened with HM-EHEC: influence of the chemical structure and the distribution of hydrophobic tails. Carbohydr Polym 41:25–35CrossRefGoogle Scholar
  10. 10.
    Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500CrossRefGoogle Scholar
  11. 11.
    Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solution of electrolytes. Acta Physicochim 14:633–662Google Scholar
  12. 12.
    Verwey EJW, Overbeek JTG (1947) Theory of stability of lyophobic colloids. J Phys Chem 51:631–636CrossRefGoogle Scholar
  13. 13.
    Langmuir I (1938) The role of attractive and repulsive forces in the formation of tactoids, thixotropic gels, protein crystals and coacervates. J Chem Phys 6:873–896CrossRefGoogle Scholar
  14. 14.
    De Meirleir N, Pellens L, Broeckx W, van Assche G, De Malsche W (2014) The rheological properties of hydrogenated castor oil crystals. Colloid Polym Sci 292:2539–2547CrossRefGoogle Scholar
  15. 15.
    Yang D, Hrymak AN (2013) Rheology of aqueous dispersions of hydrogenated castor oil. Appl Rheol 23:23622-1-23622-9Google Scholar
  16. 16.
    De Meirleir N, Broeckx W, Puyvelde PV, De Malsche W (2015) Surfactant assisted emulsion crystallization of hydrogenated castor oil. Cryst Growth Des 15:635–641CrossRefGoogle Scholar
  17. 17.
    Dreiss CA, Nwabunwanne E, Liua R, Brooks NJ (2009) Assembling and de-assembling micelles: competitive interactions of cyclodextrins and drugs with pluronics. Soft Matter 5:1888–1896CrossRefGoogle Scholar
  18. 18.
    Oelschlaeger C, Schopferer M, Scheffold F, Willenbacher N (2009) Linear-to-branched micelles transition: a rheometry and diffusing wave spectroscopy (dws) study. Langmuir 25:716–723CrossRefGoogle Scholar
  19. 19.
    Lutz Bueno V, Pasquino R, Liebi M, Kohlbrecher J, Fischer P (2016) Viscoelasticity enhancement of surfactant solutions depends on molecular conformation: influence of surfactant headgroup structure and its counterion. Langmuir 32:4239–4250CrossRefGoogle Scholar
  20. 20.
    Cates ME, Candau SJ (1990) Statics and dynamics of worm-like surfactant micelles. J Phys Condens Matter 2:6869–6892CrossRefGoogle Scholar
  21. 21.
    Dreiss CA (2007) Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter 3:956–970CrossRefGoogle Scholar
  22. 22.
    Trappe V, Weitz DA (2000) Scaling of the viscoelasticity of weakly attractive particles. Phys Rev Lett 85:449–452CrossRefGoogle Scholar
  23. 23.
    Poon WCK (2002) The physics of a model colloid–polymer mixture. J Phys Condens Matter 14:R859–R880CrossRefGoogle Scholar
  24. 24.
    Schuldt C, Schnau ßJ, Händler T, Glaser M, Lorenz J, Golde T, Käs JA, Smith D (2016) Tuning synthetic semiflexible networks by bending stiffness. Phys Rev Lett 117:197801-1–197801-6CrossRefGoogle Scholar
  25. 25.
    Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305CrossRefGoogle Scholar
  26. 26.
    Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon Press, OxfordGoogle Scholar
  27. 27.
    Tharmann R, Claessens MMAE, Bausch AR (2006) Micro- and macrorheological properties of actin networks effectively cross-linked by depletion forces. Biophys J 90:2622–2627CrossRefGoogle Scholar
  28. 28.
    Wilkins GMH, Spicer PT, Solomon MJ (2009) Colloidal system to explore structural and dynamical transitions in rod networks, gels, and glasses. Langmuir 25:8951–8959CrossRefGoogle Scholar
  29. 29.
    Kazem N, Majidi C, Maloney C (2015) Gelation and mechanical response of patchy rods. Soft Matter 11:7877–7887CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Giuliano Zanchetta
    • 1
    • 2
  • Shadi Mirzaagha
    • 3
  • Vincenzo Guida
    • 4
  • Fabio Zonfrilli
    • 4
  • Marco Caggioni
    • 5
  • Nino Grizzuti
    • 3
  • Rossana Pasquino
    • 3
  • Veronique Trappe
    • 1
  1. 1.Department of PhysicsUniversity of FribourgFribourgSwitzerland
  2. 2.Department of Medical Biotechnology and Translational MedicineUniversity of MilanoMilanItaly
  3. 3.Department of Chemical, Materials and Industrial Production EngineeringUniversità degli Studi di Napoli Federico IINaplesItaly
  4. 4.Bruxelles Innovation CenterProcter & Gamble Co.Strombeek BeverBelgium
  5. 5.Microstructured Fluids Group, Procter & Gamble Co.West ChesterUSA

Personalised recommendations