Advertisement

Colloid and Polymer Science

, Volume 296, Issue 8, pp 1341–1352 | Cite as

Polymer- vs. colloidal-type viscoelastic mechanics of microgel pastes

  • Simon Kunz
  • Maria Pawlik
  • Wolfgang Schärtl
  • Sebastian Seiffert
Original Contribution
  • 178 Downloads

Abstract

Microgels can form viscoelastic pastes upon packing. For small microgels with low crosslinking density, however, it is unclear if the yielding of these pastes is based on colloid analogous breaking of cages or disentanglement of polymer chain ends at the microgel surface. To answer this question, we investigate pastes of 100-nm-sized poly(N-isopropylacrylamide) pNIPAAm microgels and study the effect of the microgel crosslinking density on the liquid-to-solid transition and the shear-dependent yielding. Our densely crosslinked particles exhibit yield curves with a peak in the loss modulus, typical for shear melting of colloidal crystals due to cage breaking, whereas our microgels with < 10 mol% crosslinker show no loss peak. We conclude that with decreasing crosslinker content, dangling ends and other defects in the microgel polymer network allow for marked interparticle interpenetration, shifting the liquid-to-solid transition to packing fractions > 10 and changing the yielding mechanism from colloid analogous cage breaking to polymer analogous chain disentanglement.

Keywords

Colloids Microgels Rheological properties Viscoelasticity 

Notes

Acknowledgements

We thank Dr. K. Fischer for performing static and dynamic light scattering measurements to determine the ρ ratio for our soft microgels of crosslinker content 1.33 mol% (sample M75).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Funke W, Okay O, Joos-Muller B (1998) Microgels—intramolecularly crosslinked macromolecules with a globular structure. Adv Polym Sci 136:139–234CrossRefGoogle Scholar
  2. 2.
    Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711CrossRefGoogle Scholar
  3. 3.
    Senff H, Richtering W (2000) Influence of cross-link density on rheological properties of temperature-sensitive microgel suspensions. Colloid Polym Sci 278:830–840CrossRefGoogle Scholar
  4. 4.
    Vlassopoulos D, Cloitre M (2014) Tunable rheology of dense soft deformable colloids. Curr Opin Colloid Interface Sci 19:561–574CrossRefGoogle Scholar
  5. 5.
    Mattsson J, Wyss HM, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichmann DR, Weitz DA (2009) Soft colloids make strong glasses. Nature 462:83–86CrossRefPubMedGoogle Scholar
  6. 6.
    Gasser U, Hyatt JS, Lietor-Santos JJ, Herman ES, Lyon LA, Fernandez-Nieves A (2014) Form factor of pNIPAM microgels in overpacked states. J Chem Phys 034901(1–9):141Google Scholar
  7. 7.
    Fuchs M, Hofacker I, Latz A (1992) Primary relaxation in a hard-sphere system. Phys Rev A 45:898–912CrossRefPubMedGoogle Scholar
  8. 8.
    vanMegen W, Underwood SM (1994) Glass-transition in colloidal hard spheres—measurement and mode-coupling-theory analysis of the coherent intermediate scattering function. Phys Rev E 49:4206–4220CrossRefGoogle Scholar
  9. 9.
    Pusey PN, vanMegen W (1986) Phase-behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342CrossRefGoogle Scholar
  10. 10.
    Pusey PN, vanMegen W (1987) Observation of a glass transition in suspensions of spherical colloidal particles. Phys Rev Lett 59:2083–2086CrossRefPubMedGoogle Scholar
  11. 11.
    Mohanty PS, Nöjd S, vanGruijtHuijsen K, Crassous JJ, Obiols-Rabasa M, Schweins R, Stradner A, Schurtenberger P (2017) Interpenetration of polymeric microgels at ultrahigh densities. Sci Rep 7:1487 (1–12)CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yuan Q, Gu J, Zhao Y, Yao L, Guan Y, Zhang Y (2016) Synthesis of a colloidal molecule from soft microgel spheres. ACS Macro Lett 5:565–568CrossRefGoogle Scholar
  13. 13.
    Yao L, Li Q, Guan Y, Zhu XX, Zhang Y (2018) Tetrahedral, octahedral, and triangular dipyramidal microgel clusters with thermosensitivity fabricated from binary colloidal crystals template and thiol−ene reaction. ACS Macro Lett 7:80–84CrossRefGoogle Scholar
  14. 14.
    Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Duplessit R, Picot C, de Gennes PGD (1975) Solutions of flexible polymers. Neutron experiments and interpretation. Macromolecules 8:804–818CrossRefGoogle Scholar
  15. 15.
    Descloizeaux J (1975) Lagrangian theory of polymer-solutions at intermediate concentration. J Phys 36:281–291CrossRefGoogle Scholar
  16. 16.
    Edwards SF (1966) Theory of polymer solutions at intermediate concentration. Proc Phys Soc 88:265–280CrossRefGoogle Scholar
  17. 17.
    Cloitre M, Borrega R, Leibler L (2000) Rheological aging and rejuvenation in microgel pastes. Phys Rev Lett 85:4819–4822CrossRefPubMedGoogle Scholar
  18. 18.
    Carrier V, Petekidis G (2009) Nonlinear rheology of colloidal glasses of soft thermosensitive microgel particles. J Rheol 53:245–273CrossRefGoogle Scholar
  19. 19.
    Ketz RJ, Prudhomme RK, Graessley WW (1988) Rheology of concentrated microgel solutions. Rheol Acta 27:531–539CrossRefGoogle Scholar
  20. 20.
    Seth JR, Cloitre M, Bonnecaze RT (2008) Influence of short-range forces on wall-slip in microgel pastes. J Rheol 52:1241–1268CrossRefGoogle Scholar
  21. 21.
    Seth JR, Locatelli-Champagne CE, Monti F, Bonnecaze RT, Cloitre M (2012) How do soft particle glasses yield and flow near solid surfaces? Soft Matter 8:140–148CrossRefGoogle Scholar
  22. 22.
    vanderVaart K, Rahmani Y, Zargar R, Hu ZB, Bonn D, Schall P (2013) Rheology of concentrated soft and hard-sphere suspensions. J Rheol 57:1195–1209CrossRefGoogle Scholar
  23. 23.
    Shao Z, Negi AS, Osuji CP (2013) Role of interparticle attraction in the yielding response of microgel suspensions. Soft Matter 9:5492–5500CrossRefGoogle Scholar
  24. 24.
    Urayama K, Saeki T, Cong S, Uratani S, Takigawa T, Murai M, Suzuki D (2014) A simple feature of yielding behavior of highly dense suspensions of soft micro-hydrogel particles. Soft Matter 10:9486–9495CrossRefPubMedGoogle Scholar
  25. 25.
    Meeker SP, Bonnecaze RT, Cloitre M (2004) Slip and flow in pastes of soft particles: direct observation and rheology. J Rheol 48:1295–1320CrossRefGoogle Scholar
  26. 26.
    Sollich P (1998) Rheological constitutive equation for a model of soft glassy materials. Phys Rev E 58:738–759CrossRefGoogle Scholar
  27. 27.
    Hyun K, Kim SH, Ahn KH, Lee SJ (2002) Large amplitude oscillatory shear as a way to classify the complex fluids. J Non-Newtonian Fluid Mech 107:51–65CrossRefGoogle Scholar
  28. 28.
    Mason T, Weitz D (1995) Linear viscoelasticity of colloidal hard-sphere suspensions near the glass-transition. Phys Rev Lett 75:2770–2773CrossRefPubMedGoogle Scholar
  29. 29.
    Liu AJ, Nagel SR (1998) Nonlinear dynamics—jamming is not just cool any more. Nature 396:21–22CrossRefGoogle Scholar
  30. 30.
    O’Hern CS, Silbert LE, Liu J, Nagel R (2003) Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys Rev E 011306(1–19):68Google Scholar
  31. 31.
    Biroli G (2007) Jamming—a new kind of phase transition? Nat Phys 3:222–223CrossRefGoogle Scholar
  32. 32.
    vanHecke M (2010) Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J Phys Condens Matter 22:033101 (1–24)CrossRefGoogle Scholar
  33. 33.
    Basu A, Xu Y, Still T, Arratia PE, Zhang Z, Nordstrom KN, Rieser JM, Gollub JP, Durian DJ, AG Y (2014) Rheology of soft colloids across the onset of rigidity: scaling behavior, thermal, and non-thermal responses. Soft Matter 10:3027–3035CrossRefPubMedGoogle Scholar
  34. 34.
    Ikeda A, Berthier L, Sollich P (2013) Disentangling glass and jamming physics in the rheology of soft materials. Soft Matter 9:7669–7683CrossRefGoogle Scholar
  35. 35.
    Vlassopoulos D, Kapnistos M, Fytas G, Roovers J (2000) Structure and viscoelasticity of interacting spherical brushes. Macromol Symp 158:149–153CrossRefGoogle Scholar
  36. 36.
    Vlassopoulos D (2004) Colloidal star polymers: models for studying dynamically arrested states in soft matter. J Polym Sci Part B Polym Phys 4:2931–2941CrossRefGoogle Scholar
  37. 37.
    Vlassopoulos D, Fytas G (2010) From polymers to colloids: engineering the dynamic properties of hairy particles. Adv Polym Sci 236:1–54Google Scholar
  38. 38.
    Erwin BM, Cloitre M, Gauthier M, Vlassopoulos D (2010) Dynamics and rheology of colloidal star polymers. Soft Matter 6:2825–2833CrossRefGoogle Scholar
  39. 39.
    Sierra-Martin B, Fernandez-Nieves A (2012) Phase and non-equilibrium behaviour of microgel suspensions as a function of particle stiffness. Soft Matter 8:4141–4150CrossRefGoogle Scholar
  40. 40.
    diLorenzo F, Seiffert S (2015) Counter-effect of Brownian and elastic forces on the liquid-to-solid transition of microgel suspensions. Soft Matter 11:5235–5245CrossRefGoogle Scholar
  41. 41.
    Menut P, Seiffert S, Sprakel J, Weitz DA (2012) Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale microgels. Soft Matter 8:156–164CrossRefGoogle Scholar
  42. 42.
    Einstein A (1906) Eine neue Bestimmung der Moleküldimensionen. Ann Phys 19:289–306CrossRefGoogle Scholar
  43. 43.
    Kubota K, Fujishige S, Ando I (1990) Solution properties of poly(N-isopropylacrylamide) in water. Polym J 22:15–20CrossRefGoogle Scholar
  44. 44.
    Einstein A (1911) Berichtigung zu meiner Arbeit:“Eine neue Bestimmung der Moleküldimensionen”. Ann Phys 34:591–592CrossRefGoogle Scholar
  45. 45.
    Batchelor GK (1977) Effect of Brownian motion on bulk stress in a suspension of spherical particles. J Fluid Mech 83:97–117CrossRefGoogle Scholar
  46. 46.
    diLorenzo F, Seiffert S (2013) Macro- and microrheology of heterogeneous microgel packings. Macromolecules 46:1962–1972CrossRefGoogle Scholar
  47. 47.
    Virtanen OLJ, Ala-Mutka HM, Richtering W (2015) Can the reaction mechanism of radical solution polymerization explain the microgel final particle volume in precipitation polymerization of N-isopropylacrylamide? Macromol Chem Phys 216:1431–1440CrossRefGoogle Scholar
  48. 48.
    Stieger M, Pedersen JS, Lindner P, Richtering W (2004) Are thermoresponsive microgels model systems for concentrated colloidal suspensions? A rheology and small-angle neutron scattering study. Langmuir 20:7283–7292CrossRefPubMedGoogle Scholar
  49. 49.
    Heo Y, Larson RG (2008) Universal scaling of linear and nonlinear rheological properties of semidilute and concentrated polymer solutions. Macromolecules 41:8903–8915CrossRefGoogle Scholar
  50. 50.
    Antonietti M, Bremser W, Schmidt M (1990) Microgels—model polymers for the crosslinked state. Macromolecules 23:3796–3805CrossRefGoogle Scholar
  51. 51.
    Gao J, Hu Z (2002) Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir 18:1360–1367CrossRefGoogle Scholar
  52. 52.
    Wu C (1998) A comparison between the ‘coil-to-globule’ transition of linear chains and the “volume phase transition” of spherical microgels. Polymer 19:4609–4619CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Physical ChemistryJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations