Colloid and Polymer Science

, Volume 296, Issue 8, pp 1301–1306 | Cite as

Catanionic AOT/BDAC micelles on gold {111} surfaces

  • A. H. PoghosyanEmail author
  • A. A. Shahinyan
  • J. Koetz
Original Contribution


A sodium dioctyl sulfosuccinate (AOT)/benzyl hexadecyl dimethyl ammonium chloride (BDAC) mixed micelle self-organization and adsorption on gold Au(111) surfaces have been investigated using a molecular dynamics approach. The spherical AOT/BDAC mixed micelle is strongly adsorbed on the gold surface and is disoriented to a cylinder-like shape.


AOT/BDAC micelles Gold surfaces Molecular dynamics 



Sincere thanks to Dr. Hrachya Astsatryan for providing us with the access to the computational resources.

Funding information

The research has been co-funded (A.H.Poghosyan) by the European Commission under the H2020 Research Infrastructures contract no. 675121 (project VI-SEEM).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Marques EF, Regev O, Khan A, Miguel MG, Lindman B (1998) Vesicle formation and general phase behavior in the catanionic mixture SDS−DDAB−water. The anionic-rich side. J Phys Chem B 102:6746–6758CrossRefGoogle Scholar
  2. 2.
    Zemb T, Dubois M, Deme B, Gulik-Kryzwicki T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science 283:816–819CrossRefPubMedGoogle Scholar
  3. 3.
    Khan A, Marques EF (1999) Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid Interface Sci 4:402–410CrossRefGoogle Scholar
  4. 4.
    Villa CC, Correa NM, Silber JJ, Moyano F, Falcone RD (2015) Singularities in the physicochemical properties of spontaneous AOT-BHD unilamellar vesicles in comparison with DOPC vesicles. PhysChemChemPhys 17:17112–17121Google Scholar
  5. 5.
    Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science 145:1371–1374CrossRefGoogle Scholar
  6. 6.
    Johnson CM, Badelli S (2014) Vibrational sum frequency spectroscopy studies of the influence of solutes and phospholipids at vapor/water interfaces relevant to biological and environmental systems. Chem Rev 114:8416–8446CrossRefPubMedGoogle Scholar
  7. 7.
    Silva BFB, Marques EF, Olsson U (2008) Unusual vesicle−micelle transitions in a salt-free catanionic surfactant: temperature and concentration effects. Langmuir 24:10746–10754CrossRefPubMedGoogle Scholar
  8. 8.
    Silva BFB, Marques EF (2005) Thermotropic behavior of asymmetric chain length catanionic surfactants: the influence of the polar head group. J Colloid Interface Sci 290:267–274CrossRefPubMedGoogle Scholar
  9. 9.
    Bergström M (1996) Thermodynamics of vesicle formation from a mixture of anionic and cationic surfactants. Langmuir 12:2454–2463CrossRefGoogle Scholar
  10. 10.
    Umlong IM, Ismail K (2005) Micellization of AOT in aqueous sodium chloride, sodium acetate, sodium propionate, and sodium butyrate media: a case of two different concentration regions of counterion binding. J Colloid Interface Sci 291:529–536CrossRefPubMedGoogle Scholar
  11. 11.
    Dey J, Bhattacharjee J, Hassan PA, Aswal VK, Das D, Ismail K (2010) Micellar shape driven counterion binding. Small-angle neutron scattering study of AOT micelle. Langmuir 26:15802–15806CrossRefPubMedGoogle Scholar
  12. 12.
    Villa CC, Moyano F, Ceolin M, Silber JJ, Falcone RD, Correa NM (2012) A unique ionic liquid with amphiphilic properties that can form reverse micelles and spontaneous unilamellar vesicles. Chem Eur J 18:15598–15601CrossRefPubMedGoogle Scholar
  13. 13.
    Falcone RD, Silber JJ, Correa NM (2009) Which are the factors that control the nonaqueous AOT reverse micelles sizes? A dynamic light scattering study. PhysChemChemPhys 11:11096–11100Google Scholar
  14. 14.
    Poghosyan AH, Shahinyan AA, Koetz J (2018) Self-assembled monolayer formation of distorted cylindrical AOT micelles on gold surfaces. Colloids Surf A Physicochem Eng Asp 546(5):20–27CrossRefGoogle Scholar
  15. 15.
    Liebig F, Sarhan RM, Prietzel C, Thünemann AF, Bargheer M, Koetz J (2018) Undulated gold nanoplatelet superstructures: in situ growth of hemispherical gold nanoparticles onto the surface of gold nanotriangles. Langmuir 34:4584–4594CrossRefPubMedGoogle Scholar
  16. 16.
    Liebig F, Sarhan RM, Prietzel C, Schmitt CNZ, Bargheer M, Koetz J (2018) Tuned surface-enhanced Raman scattering performance of undulated Au@Ag triangles. ACS Appl Nano Mater.
  17. 17.
    Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (eds) (1981) Intermolecular Forces. Reidel, DordrechtGoogle Scholar
  18. 18.
    Wright LB, Rodger PM, Corni S, Walsh TR (2013) GolP-CHARMM: first-principles based force fields for the interaction of proteins with Au(111) and Au(100). J Chem Theory Comput 9(3):1616–1630CrossRefPubMedGoogle Scholar
  19. 19.
    Berendsen HJC, van der Spoel D, van Drunen R (1995) GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun 91:43–56CrossRefGoogle Scholar
  20. 20.
    Abel S, Sterpone F, Bandyopadhyay S, Marchi M (2004) Molecular modeling and simulations of AOT-water reverse micelles in isooctane: structural and dynamic properties. J Phys Chem B 108:19458–19466CrossRefGoogle Scholar
  21. 21.
    Shi W, Hong L, Damodaran K, Nulwara HB, Luebke DR (2014) Molecular simulation and experimental study of CO2 adsorption in ionic liquid reverse micelle. J Phys Chem B 118(48):13870–13881CrossRefPubMedGoogle Scholar
  22. 22.
    Nosé S (1984) A unified formulation of the constant temperature molecular-dynamics methods. J Chem Phys 81(1):511–519CrossRefGoogle Scholar
  23. 23.
    Rahman A, Parrinello N (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52:7182–7189CrossRefGoogle Scholar
  24. 24.
    Hess B, Bekker H, Berendsen HJC, Fraaije J (1987) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472CrossRefGoogle Scholar
  25. 25.
    Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092CrossRefGoogle Scholar
  26. 26.
    Verlet L (1967) Computer “experiments” on classical fluids: thermodynamical properties of Lennard-Jones molecules. Phys Rev 159:98–103CrossRefGoogle Scholar
  27. 27.
    Astsatryan H, Sahakyan V, Shoukourian Yu, Cros P-H, Dayde M, Dongarra J, Oster P (2015) Strengthening compute and data intensive capacities of Armenia, IEEE Proceedings of 14th RoEduNet International Conference—Networking in Education and Research (NER’2015), Craiova, Romania, pp. 28-33, September 24–26Google Scholar
  28. 28.
    Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38CrossRefPubMedGoogle Scholar
  29. 29.
    Todeschini R, Consonni V (2008) In: Handbook of chemoinformatics: from data to knowledge (4 Volumes) Johann Gasteiger (ed). WILEY-VCH, Weinheim, pp 1004–1033Google Scholar
  30. 30.
    Nomura H, Kawaizumi F, Yarwood J (1995) Structure, fluctuation and relaxation in solutions. Elsevier, New York City, p 445Google Scholar
  31. 31.
    Paruchuri VK, Nalaskowski J, Shah DO, Miller JD (2006) The effect of cosurfactants on sodium dodecyl sulfate micellar structures at a graphite surface. Colloids Surf A Physicochem Eng Asp 272:157–163CrossRefGoogle Scholar
  32. 32.
    Liveri VT (2006) In: Lockwood DJ (ed) Controlled synthesis of nanoparticles in microheterogeneous systems: nanostructure Science and Technology. Springer Science, New YorkGoogle Scholar
  33. 33.
    Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK (2007) Hydration of sodium, potassium, and chloride ions in solution and the concept of structure maker/breaker. J Phys Chem B 111:13570–13577CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.International Scientific-Educational Center of National Academy of SciencesYerevanArmenia
  2. 2.Institut für ChemieUniversität PotsdamPotsdamGermany

Personalised recommendations