Advertisement

Colloid and Polymer Science

, Volume 296, Issue 6, pp 1057–1070 | Cite as

An effect of the film texture on high-voltage polarization and local piezoelectric properties of the ferroelectric copolymer of vinylidene fluoride

  • V. V. KochervinskiiEmail author
  • D. A. Kiselev
  • M. D. Malinkovich
  • N. A. Shmakova
Original Contribution
  • 108 Downloads

Abstract

Vinylidene fluoride and tetrafluoroethylene copolymer 94/6 texturing has been carried out by one-axis drawing at Td = 75 °C up to the ratio of 6 with subsequent isometric tempering at 130 °C. Data of X-ray diffraction and IR-spectroscopy indicate partial polymorph transition from the metastable γ-phase to the polar β-modification with long segments in the conformation of the planar zigzag. The surface topography data show that the oriented film roughness turns out to be almost three times lower than that of the isotropic one. High-resolution vector piezoresponse force microscopy (PFM) has been used to investigate topography and ferroelectric domains in polymer films for visualization out-of-plane and in-plane polarization components. It is shown that, in the oriented sample, both crystallinity and the degree of polar β-phase crystal perfection are higher. It was found that conductivity “abnormal” dropping takes place at the stage of intensive Pr rising with the field growing. This fact is explained by quick trapping of charge carriers by polar planes of crystals with increasing the effective trap area.

Keywords

Ferroelectric polymers Structure Polarization 

Notes

Funding information

The reported study was funded by the RFBR according to the research project no. 18-03-00493. The PFM studies were performed at the Center of Collective Use “Material Science and Metallurgy” of the National University of Science and Technology “MISiS” and were supported by the Ministry of Education and Science of the Russian Federation (Grants 11.9706.2017/7.8 and 16.2811.2017/4.6).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Wang TT, Herbert JM, Glass AM (1988) The applications of ferroelectric polymers. Blackie and Son, GlasgowGoogle Scholar
  2. 2.
    Nalwa HS (ed) (1995) Ferroelectric polymers: chemistry: physics, and applications. CRC PressGoogle Scholar
  3. 3.
    Kochervinskii VV (1994) The properties of fluoride-containing polymer films with piezoactivity and pyroactivity. Russ Chem Rev 63(4):367–371CrossRefGoogle Scholar
  4. 4.
    Kochervinskii VV, Glukhov VA, Sokolov VG, Romadin VF, Murasheva EM, Ovchinnikov YuK, Trofimov NA, Lokshin BV (1988) Microstructure and crystallization of isotropic films of a copolymer of vinylidene fluoride and tetrafluoroethylene Vysokomolekulyarnie Soedinenuya Seria A 30(9): 1969–1976 in RussianGoogle Scholar
  5. 5.
    Kochervinskii VV, Chubunova EV, Lebedinskii YY, Shmakova NA, Khnykov AY (2011) The role of new functional groups in the surface layer of LDPE during its high-voltage contact polarization. Polym Sci Ser A 53(10):929–946CrossRefGoogle Scholar
  6. 6.
    Malyshkina IA, Markin GV, Kochervinskiĭ VV (2006) Investigation into the dielectric relaxation of vinylidene fluoride copolymers with hexafluoropropylene. Phys Solid State 48(6):1197–1199CrossRefGoogle Scholar
  7. 7.
    Kochervinskii VV, Malyshkina IA, Markin GV, Gavrilova ND, Bessonova NP (2007) Dielectric relaxation in vinylidene fluoride–hexafluoropropylene copolymers. J Appl Polym Sci 105(3):1101–1117CrossRefGoogle Scholar
  8. 8.
    Kochervinskii V, Malyshkina I (2010) Peculiarities of high-temperature dielectric relaxation in vinylidene fluoride–hexafluoropropylene copolymers. J Non-Cryst Solids 356(11):564–567CrossRefGoogle Scholar
  9. 9.
    Kochervinskii V, Malyshkina I, Pavlov A, Pakuro N, Bessonova N, Shmakova N, Bedin S, Chubunova E, Lebedinskii Y (2015) An effect of the electrode material on space charge relaxation in ferroelectric copolymers of vinylidene fluoride. J Appl Phys 118(24):244102 (9pp)CrossRefGoogle Scholar
  10. 10.
    Wolf U, Arkhipov VI, Bässler H (1999) Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Phys Rev B 59(11):7507–7513CrossRefGoogle Scholar
  11. 11.
    Ishii H, Sugiyama K, Ito E, Seki K (1999) Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Adv Mater 11(8):605–625CrossRefGoogle Scholar
  12. 12.
    Zakreevskii VA, Sudar NT (1992) Injection of holes into polymers from metal electrodes in strong electric fields. Fizika Tverdogo Tela 34 (10): 3228–3232 in RussianGoogle Scholar
  13. 13.
    Kochervinskii VV, Chubunova EV, Lebedinskii YY, Pavlov AS, Pakuro NI (2015) Influence of the high-voltage conductivity on peculiarity of polarization ferroelectric polymer on based vinylidenefluoride. Adv Mater Res 4(2):113–132CrossRefGoogle Scholar
  14. 14.
    Kochervinskii VV, Kiselev DA, Malinkovich MD, Pavlov AS, Kozlova NV, Shmakova NA (2014) Effect of the structure of a ferroelectric vinylidene fluoride-tetrafluoroethylene copolymer on the characteristics of a local piezoelectric response. Polym Sci Ser A 56(1):48–62CrossRefGoogle Scholar
  15. 15.
    Ohigashi H, Omote K, Gomyo T (1995) Formation of “single crystalline films” of ferroelectric copolymers of vinylidene fluoride and trifluoroethylene. Appl Phys Lett 66(24):3281–3283CrossRefGoogle Scholar
  16. 16.
    Ohigashi H (1988) In: Wang TT, Herbert JM, Glass AM (eds) The application of ferroelectric polymers. Black, Glasgow, pp 237–273Google Scholar
  17. 17.
    Kochervinskii VV, Malyshkina IA, Korlyukov AA, Shakhirzyanov RI, Shoranova LO (2016) On the influence of metastable paraelectric phase on the characteristics of low-temperature cooperative and local molecular mobility in a ferroelectric copolymer of vinylidene fluoride and trifluoroethylene. Intern J Pharm Technol 8(4):27225–27237Google Scholar
  18. 18.
    Pike GE, Warren WL, Dimos D, Tuttle BA, Ramesh R, Lee J, Keramidas VG, Evans JT (1995) Voltage offsets in (Pb, La)(Zr, Ti)O3 thin films. Appl Phys Lett 66(4):484–486CrossRefGoogle Scholar
  19. 19.
    Lee J, Choi CH, Park BH, Noh TW, Lee JK (1998) Built-in voltages and asymmetric polarization switching in Pb(Zr,Ti)O3 thin film capacitors. Appl Phys Lett 72(25):3380–3382CrossRefGoogle Scholar
  20. 20.
    Lee HJ, Kim IW, Kim JS, Ahn CW, Park BH (2009) Ferroelectric and piezoelectric properties of Na0.52K0.48NbO3 thin films prepared by radio frequency magnetron sputtering. Applied Physics Letters 94(9) 092902 (3 pp)Google Scholar
  21. 21.
    Miller SL, Schwank JR, Nasby RD, Rodgers MS (1991) Modeling ferroelectric capacitor switching with asymmetric nonperiodic input signals and arbitrary initial conditions. J Appl Phys 70(5):2849–2860CrossRefGoogle Scholar
  22. 22.
    Mehta RR, Silverman BD, Jacobs JT (1973) Depolarization fields in thin ferroelectric films. J Appl Phys 44(8):3379–3385CrossRefGoogle Scholar
  23. 23.
    Wurfel P, Batra IP (1976) Depolarization effects in thin ferroelectric films. Ferroelectrics 12(1):55–61CrossRefGoogle Scholar
  24. 24.
    Tagantsev AK, Pawlaczyk C, Brooks K, Landivar M, Colla E, Setter N (1995) Depletion and depolarizing effects in ferroelectric thin films and their manifestations in switching and fatigue. Integr Ferroelectr 6(1–4):309–320CrossRefGoogle Scholar
  25. 25.
    Dawber M, Chandra P, Littlewood PB, Scott JF (2003) Depolarization corrections to the coercive field in thin-film ferroelectrics. J Phys Condens Matter 15(24):L393–L398CrossRefGoogle Scholar
  26. 26.
    Black CT, Farrell C, Licata TJ (1997) Suppression of ferroelectric polarization by an adjustable depolarization field. Appl Phys Lett 71(14):2041–2043CrossRefGoogle Scholar
  27. 27.
    Baudry L, Tournier J (2001) Lattice model for ferroelectric thin film materials including surface effects: investigation on the “depolarizing” field properties. J Appl Phys 90(3):1442–1454CrossRefGoogle Scholar
  28. 28.
    Bratkovsky AM, Levanyuk AP (2006) Depolarizing field and “real” hysteresis loops in nanometer-scale ferroelectric films. Appl Phys Lett 89(25):253108 (3pp)CrossRefGoogle Scholar
  29. 29.
    Hsu BS, Kwan SH, Wong LW (1975) Dipole moments in oriented poly (ethylene terephthalate). J Polym Sci B Polym Phys 13(11):2079–2090CrossRefGoogle Scholar
  30. 30.
    Phillips PJ, Kleinheins G, Stein RS (1972) Anisotropy of the dielectric relaxation of a crystalline polymer. J Polym Sci B Polym Phys 10(8):1593–1607CrossRefGoogle Scholar
  31. 31.
    Kochervinskiĭ VV (2006) Structural changes in ferroelectric polymers under the action of strong electric fields by the example of polyvinylidene fluoride. Crystallogr Rep 51:S88–S107CrossRefGoogle Scholar
  32. 32.
    Wegener M, Künstler W, Richter K, Gerhard-Multhaupt R (2002) Ferroelectric polarization in stretched piezo- and pyroelectric poly (vinylidene fluoride-hexafluoropropylene) copolymer films. J Appl Phys 92(12):7442–7447CrossRefGoogle Scholar
  33. 33.
    Liu J, Zhao Y, Chen CH, Wei X, Zhang ZH (2017) Study on the polarization and relaxation processes of ferroelectric polymer films using sawyer-tower circuit with square voltage waveform. J Phys Chem C 121(23):12531–12539CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • V. V. Kochervinskii
    • 1
    Email author
  • D. A. Kiselev
    • 2
    • 3
  • M. D. Malinkovich
    • 2
  • N. A. Shmakova
    • 1
  1. 1.Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.National University of Science and Technology “MISiS”MoscowRussia
  3. 3.Kotel’nikov Institute of Radioengineering and Electronics of Russian Academy of SciencesFryazino, Moscow RegionRussia

Personalised recommendations