Colloid and Polymer Science

, Volume 296, Issue 4, pp 771–780 | Cite as

Pb arachidate Langmuir-Blodgett coatings of silicon wafers: relation between Pb particle density and subphase composition

  • Svetlana A. KlimovaEmail author
  • Ramsia Sreij
  • Daniil Bratashov
  • Johannes Bookhold
  • Niclas Teichert
  • Anna S. Gorobets
  • Thomas Hellweg
Original Contribution


The formation of lead arachidate (Pb(AA)2) coatings produced by Langmuir tensiometry (LT) was studied in dependence of lead nitrate (Pb(NO3)2) concentration in the aqueous subphase at pH 5.5. The stable Pb(AA)2 monolayers were transferred to Si wafers and TEM grids at 35 mN/m in the liquid condensed phase of the AA monolayer applying the Langmuir-Blodgett (LB) (ten monolayers) or the Langmuir-Schaefer (LS) technique, respectively. The most homogeneous monolayer was obtained at a Pb(NO3)2 concentration of 0.1 mM by using the LS method. Most homogeneous films (five bilayers) were obtained for a Pb(NO3)2 concentration of 0.01 mM by using the LB method. The formed films are investigated by transmission electron microscopy (monolayer produced by LS), X-ray reflectivity (XRR), and atomic force microscopy (films produced by LB). These methods revealed the formation of homogeneously distributed lead inclusions in the formed monolayers and films. Pb aggregates increase in number whereas their average size stays constant at ≈ 50 nm2 with increasing Pb(NO3)2 concentration. Thickness parameters were determined by XRR. With increasing Pb(NO3)2 concentration, the bilayer thickness was found to increase. Furthermore, the patterns (111) and (200) for a cubic lead structure were found. The experimental results are compared with simulations obtained from geometry optimization on a semi-empirical quantum level to discuss the lead-ion binding to the AA molecules at pH 5.5.


Lead arachidate coatings Lead inclusions Langmuir-Blodgett SEM AFM XRR AES XRD 



The authors thank Prof. Andreas Hütten for great discussion, Dr. Jan Schmalhorst for AES experiments, and Lars Helmich for X-ray reflectivity experiments. The authors also thank Uwe Güth for help with LB experiments. S.K. gratefully acknowledges funding by the German Academic Exchange Service (DAAD, project No. A/12/86233).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflicts of interest.

Supplementary material

396_2018_4288_MOESM1_ESM.pdf (206 kb)
(PDF 205 KB)


  1. 1.
    Bringans RD, Biegelsen DK, Swartz L-E (1991) Atomic-step rearrangement on Si(100) by interaction with arsenic and the implication for GaAs-on-Si epitaxy. Phys Rev B 44:3054–3063CrossRefGoogle Scholar
  2. 2.
    Voigtländer B, Weber T, Smilauer P, Wolf DE (1997) Transition from island growth to step-flow growth for Si/Si (100) epitaxy. J Phys Rev Lett 78(11):2164–2167CrossRefGoogle Scholar
  3. 3.
    Zhang LY, Srinivasan MP (2001) Hydrodynamics of subphase entrainment during Langmuir-Blodgett film deposition. Colloids Surf A Physicochem Eng Asp 193:15–33CrossRefGoogle Scholar
  4. 4.
    Peng J, Barnes GT, Gentle I (2001) The structures of Langmuir–Blodgett films of fatty acids and their salts. Adv Coll and Interf Sci 91:163–219CrossRefGoogle Scholar
  5. 5.
    Ringsdorf H, Schlarb B, Venzmer J (1988) Molecular architecture and function of polymeric oriented systems models for the study of organization, surface recognition, and dynamics of biomembranes. Angew Chem Int Ed Engl 27:113–158CrossRefGoogle Scholar
  6. 6.
    Lu S, Sohling U, Krajewski T, Menning M, Schmidt H (1998) characterization of PbS nanoparticles in ethanolic solution stabilized by hydroxyproryl cellulose. J Mater Sci Synthesis Lett 126:189–195Google Scholar
  7. 7.
    Matsuura N, Elliot DJ, Neil Furlong D, Grieser F (1997) In-situ measurement of lead(II) ion binding to an arachidic Langmuir monolayer using a quartz crystal microbalance. Coll and Surf A 126:189–195CrossRefGoogle Scholar
  8. 8.
    Kurnaz ML, Schwartz DK (1986) Morphology of microphase separation in arachidic acid/cadmium arachidate Langmuir-Blodgett multilayers. J Phys Chem 100:11113–11119CrossRefGoogle Scholar
  9. 9.
    Khomutov GB, Antipina MN, Bykov IV, Dembo KA, Klechkovskaya VV, Yurova TV, Bohr J, Gainutdinov RV, Tolstikhina AL (2002) Structural studies of Langmuir – Blodgett films containing rare-earth metal cations. Colloids Surf A Physicochem Eng Asp 198:261–274CrossRefGoogle Scholar
  10. 10.
    Rajdev P, Chatterji D (2007) Thermodynamic and spectroscopic studies on the nickel arachidate-RNA polymerase Langmuir-Blodgett monolayer. Langmuir 23:2037–2041CrossRefGoogle Scholar
  11. 11.
    Konopny L, Berfeld M, Popovitz-Biro R, Weissbuch I, Leiserowitz L, Lahav M (2001) Phase transitions and stabilization of the organized hybrid Langmuir-Blodgett films of Alkanoic Acids/CdS and PbS Q-Particles. Adv Mater 13:580–584CrossRefGoogle Scholar
  12. 12.
    Zheng H, Jiang J, Jianhua X, Yang Y (2011) Gas sensitivity of poly (3, 4-ethylene dioxythiophene) prepared by a modified LB film method. J of Wuhan University of Technology-Mater Sci 1 :70–74CrossRefGoogle Scholar
  13. 13.
    Langmuir I, Schaefer VJ (1936) Composition of fatty acid films on water containing calcium or barium salts. J Am Chem Soc 58:284–287CrossRefGoogle Scholar
  14. 14.
    Wang WZ, Geng Y, Yan P, Liu FY, Xie Y, Qian YTJ (1999) A novel mild route to nanocrystalline selenides at room temperature. Am Chem Soc 121:4062–4063CrossRefGoogle Scholar
  15. 15.
    Brezesinski G, Möhwald H. (2003) Langmuir monolayers to study interactions at model membrane surfaces. Adv Colloid Interf Sci 100:563–584CrossRefGoogle Scholar
  16. 16.
    Antipina MN, Bykov IV, Gainutdinov RV, Koksharov YuA, Malakhod AP, Polyakov SN, Tolstikhina AL, Yurova TV, Khomutov GB (2002) Structural control of Langmuir–Blodgett films containing metal cations by ligands exchange. Mater Sci Eng C 22:171–176CrossRefGoogle Scholar
  17. 17.
    Zotova TV, Arslanov VV, Gagina IA (1998) Monolayers and Langmuir–Blodgett films of yttrium stearate. Thin Solid Films 326:223–226CrossRefGoogle Scholar
  18. 18.
    Dziri L, Boussaad S, Tao N, Leblanc RM (1998) Effect of pH on acetylcholinesterase Langmuir and Langmuir-Blodgett films studied by surface potential and atomic force microscopy. Thin Solid Films 327:56–59CrossRefGoogle Scholar
  19. 19.
    Rubinger CPL, Moreira RL, Cury LA, Fontes GN, Neves BRA, Meneguzzi A, Ferreira CA (2006) LangmuirBlodgett and Langmuir-Schaefer films of poly (5-amino- 1-naphthol) conjugated polymer. Appl Surf Sci 253:543–548CrossRefGoogle Scholar
  20. 20.
    Kundu S, Datta A, Hazra S (2005) Manipulating headgroups in Langmuir–Blodgett films through subphase pH variation. Chem Phys Lett 405:282–287CrossRefGoogle Scholar
  21. 21.
    Major SS, Talwar SS, Srinivasa RS (2006) Langmuir Blodgett multilayers and related nanostructure. Pramana- J Phys 67:121–134CrossRefGoogle Scholar
  22. 22.
    Chatterji D, Rajdev P (2008) Macromolecular recognition at the air-water interface: application of Langmuir-Blodgett technique. Curr Sci 95:1226–1236Google Scholar
  23. 23.
    Geue T. h., Schultz M, Englisch U, Stömmer R., Pietsch U, Meine K, Vollhardt D (1999) Investigations of pH-dependent domain structure of lead arachidate Langmuir-Blodgett films by means of x-ray specular and diffuse scattering and atomic force microscopy. J Chem Phys 110:8104–8111CrossRefGoogle Scholar
  24. 24.
    Gehlert U, Vollhardt D (1997) Nonequilibrium structures in 1-Monopalmitoyl-rac-glycerol monolayers. Langmuir 13:277–282CrossRefGoogle Scholar
  25. 25.
    Lacey D, Holder S (1990) Langmuir-blodgett films. Plenum Press, New YorkGoogle Scholar
  26. 26.
    Mohai M, Kiss E, Toth A, Szalma J, Bertóti I (2002) Preparation and characterization of Langmuir – Blodgett-type arachidate films. Surf Interface Anal 34:772–776CrossRefGoogle Scholar
  27. 27.
    Adamson AW (1976) Physical chemistry of surfaces, 3rd edn. Wiley, New YorkGoogle Scholar
  28. 28.
    Khattari Z, Langer U, Aliaskarisohi S, Ray A, Fischer TM (2011) Effects of soluble surfactants on the Langmuir monolayers compressibility: a comparative study using interfacial isotherms and fluorescence microscopy. Mater Sci Eng C 31:1711–1715CrossRefGoogle Scholar
  29. 29.
    Necas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Cent Eur J Phys 10:181–188Google Scholar
  30. 30.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  31. 31.
    Stewart JJP (2016) Stewart Computational Chemistry, Colorado Springs, CO, USA,
  32. 32.
    The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC, USA,
  33. 33.
    Martínez L, Andrade R, Birgin EG, Martínez JM (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30(13):2157–2164CrossRefGoogle Scholar
  34. 34.
    Hassinen T, Peräkylä M (2001) New energy terms for reduced protein models implemented in an off-lattice force field. J Comput Chem 22:1229–1242CrossRefGoogle Scholar
  35. 35.
    Stetsyura SV, Klimova SA, Wenig SB, Malyar IV, Arslan M, Dincer I, Elerman Y (2012) Preparation and probe analysis of Langmuir–Blodgett films with metal-containing dendritic and cluster structures. Appl Phys A 109:571–578CrossRefGoogle Scholar
  36. 36.
    Bratashov DN, Klimova SA, Serdobintsev AA, Malyar IV, Stetsyura SV (2012) Creating micron regions with modified luminescent properties and topology on CdS x Se1 x films by laser annealing. Tech Phys Lett 38:572–575CrossRefGoogle Scholar
  37. 37.
    Baltrusaitis J, Chen H, Rubasinghege G, Grassian VH (2012) Heterogeneous atmospheric chemistry of lead oxide particles with nitrogen dioxide increases lead solubility. Environmental and Health Implications Environ Sci & Tech 46:12806–12813Google Scholar
  38. 38.
    Englisch U, Barberka TA, Pietsch U, Höhne U (1995) Investigation of the chain−chain interface in a lead−stearate multilayer using neutron reflectivity. Thin Solid Films 266:234–237CrossRefGoogle Scholar
  39. 39.
    Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys. Rev. 95(2):359–369CrossRefGoogle Scholar
  40. 40.
    Kluizenaar EE (1983) Surface oxidation of molten soft solder: an Auger study. J Vac Sci Technol A 1:1480–1485CrossRefGoogle Scholar
  41. 41.
    Sekine T, Ikeo N, Nagasawa Y (1996) Comparison of AES chemical shifts with XPS chemical shifts. Appl Surf Sci 100:30–35CrossRefGoogle Scholar
  42. 42.
    Chou NJ, Lahiri SK, Hammer R, Komarek KL (1975) Auger analysis of thin oxide films on Pb-In alloys. J Chem Phys 63:2758–2764CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Svetlana A. Klimova
    • 1
    • 4
    Email author
  • Ramsia Sreij
    • 2
  • Daniil Bratashov
    • 3
  • Johannes Bookhold
    • 2
  • Niclas Teichert
    • 1
  • Anna S. Gorobets
    • 3
  • Thomas Hellweg
    • 2
  1. 1.Department of Physics, Thin Films and Physics of NanostructuresBielefeld UniversityBielefeldGermany
  2. 2.Department of Chemistry, Physical and Biophysical ChemistryBielefeld UniversityBielefeldGermany
  3. 3.Department of Nano- and Biomedical TechnologySaratov State UniversitySaratovRussia
  4. 4.Department of Nano- and Biomedical TechnologySaratov State UniversitySaratovRussia

Personalised recommendations