Controlled modification of Nafion membrane with cationic surfactant

  • Julia A. Zakharova
  • Olga A. Novoskoltseva
  • Olga A. Pyshkina
  • Evgeny A. Karpushkin
  • Vladimir G. Sergeyev
Original Contribution
  • 98 Downloads

Abstract

Controlled modification of Nafion 112 membrane with oppositely charged micelle-forming surfactant, dodecylpyridinium chloride (DPC), has been carried out by immersion of the membrane in dilute DPC aqueous solution. All sulfonic groups of Nafion are available for ion-exchange binding with the surfactant ions, the membrane modification degree being determined by the [DPC]/[SO3] ratio. DPC binding is accompanied by hydrophobic interactions of its alkyl chains and results in the formation of intramembrane micellar phase. The modified membranes are extraordinarily stable in water and aqueous solutions of H2SO4 (at least, 2.5 M), NaCl (at least, 3 M), and propanol-2 (at least, 40 vol.%), owing to the binding enhancement by Nafion hydrophobic matrix. Surfactant uptake significantly decreases equilibrium water content (from 33% down to 4%), proton conductivity (by up to two orders of magnitude), and vanadyl ions permeability (by up to four orders of magnitude) of the membrane, improving its ion selectivity.

Keywords

Membranes Micelles Surfactants Nafion Dodecylpyridinium Modification 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Doyle M, Rajendran G (2003) Membranes for GMFCs. In: Vielstich W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells: fundamentals. Technology and Application. Wiley, Chichester, pp 1936–1942Google Scholar
  2. 2.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4585.  https://doi.org/10.1021/cr0207123 CrossRefGoogle Scholar
  3. 3.
    Kreuer KD, Paddison SJ, Spohr E, Schuster M (2004) Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chem Rev 104(10):4637–4678.  https://doi.org/10.1021/cr020715f CrossRefGoogle Scholar
  4. 4.
    Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40.  https://doi.org/10.1016/j.electacta.2012.09.067 CrossRefGoogle Scholar
  5. 5.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4(4):1147–1160.  https://doi.org/10.1039/c0ee00770f CrossRefGoogle Scholar
  6. 6.
    Prifti H, Parasuraman A, Winardi S, Lim TM, Skyllas-Kazacos M (2012) Membranes for redox flow battery applications. Membranes 2(4):275–306.  https://doi.org/10.3390/membranes2020275 CrossRefGoogle Scholar
  7. 7.
    Schwenzer B, Zhang J, Kim S, Li L, Liu J, Yang Z (2011) Membrane development for vanadium redox flow batteries. Chem Sus Chem 4(10):1388–1406.  https://doi.org/10.1002/cssc.201100068 CrossRefGoogle Scholar
  8. 8.
    Yeo RS, Chin DT (1980) A hydrogen bromine cell for energy storage applications. J Electrochem Soc 127(3):549–555.  https://doi.org/10.1149/1.2129710 CrossRefGoogle Scholar
  9. 9.
    Kakuta N, Park KH, Finlayson MF, Ueno A, Bard AJ, Campion A, Fox MA, Webber SE, White JM (1985) Photoassisted hydrogen production using visible light and coprecipitated zinc sulfide·cadmium sulfide without a noble metal. J Phys Chem 89(5):732–734.  https://doi.org/10.1021/j100251a002 CrossRefGoogle Scholar
  10. 10.
    Akle BJ, Bennet MD, Leo DJ (2006) High-strain ionomeric–ionic liquid electroactive actuators. Sensors Actuators A 126(1):173–181.  https://doi.org/10.1016/j.sna.2005.09.006 CrossRefGoogle Scholar
  11. 11.
    Hsu WY, Gierke TD (1983) Ion transport and clustering in Nafion perfluorinated membranes. J Membr Sci 13(3):307–326.  https://doi.org/10.1016/S0376-7388(00)81563-X CrossRefGoogle Scholar
  12. 12.
    Gierke TD, Munn GE, Wilson FC (1981) The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle x-ray studies. J Polym Sci Polym Phys 19:1687–1704CrossRefGoogle Scholar
  13. 13.
    Gruger A (2001) Nanostructure of Nafion® membranes at different states of hydration: an IR and Raman study. Vib Spectrosc 26(2):215–225.  https://doi.org/10.1016/S0924-2031(01)00116-3 CrossRefGoogle Scholar
  14. 14.
    Rubatat L, Gebel G, Diat O (2004) Fibrillar structure of Nafion: matching Fourier and real space studies of corresponding films and solutions. Macromolecules 37:7772–7783CrossRefGoogle Scholar
  15. 15.
    Okada T, Xie G, Gorseth O, Kjelstrup S, Nakamura N, Arimura T (1998) Ion and water transport characteristics of Nafion membranes as electrolytes. Electrochim Acta 43(24):3741–3747.  https://doi.org/10.1016/S0013-4686(98)00132-7 CrossRefGoogle Scholar
  16. 16.
    Schrenk MJ, Villigram RE, Torrence NJ, Brancato SJ, Minteer SD (2002) Effects of mixture casting Nafion with quaternary ammonium bromide salts on the ion-exchange capacity and mass transport in the membranes. J Membr Sci 205(1-2):3–10.  https://doi.org/10.1016/S0376-7388(02)00031-5 CrossRefGoogle Scholar
  17. 17.
    Moore CM, Hackman S, Brennan T, Minteer SD (2005) Effects of surfactants on the transport properties of redox species through Nafion membranes. J Membr Sci 255(1-2):233–238.  https://doi.org/10.1016/j.memsci.2005.01.043 CrossRefGoogle Scholar
  18. 18.
    Xiangguo T, Jicui D, Jing S (2015) Effects of different kinds of surfactants on Nafion membranes for all vanadium redox flow battery. J Solid State Electrochem 19:1091–1101CrossRefGoogle Scholar
  19. 19.
    Teng X, Dai J, Su J, Yin G (2015) Modification of Nafion membrane using fluorocarbon surfactant for all vanadium redox flow battery. J Membr Sci 476:20–29.  https://doi.org/10.1016/j.memsci.2014.11.014 CrossRefGoogle Scholar
  20. 20.
    Phillips AK, Moore RB (2006) Mechanical and transport property modifications of perfluorosulfonate ionomer membranes prepared with mixed organic and inorganic counterions. J Polym Sci B Polym Phys 44(16):2267–2277CrossRefGoogle Scholar
  21. 21.
    Thomas TJ, Ponnusamy KE, Chang NM, Galmore K, Minteer SD (2003) Effects of annealing on mixture-cast membranes of Nafion and quaternary ammonium bromide salts. J Membr Sci 213(1-2):55–66.  https://doi.org/10.1016/S0376-7388(02)00512-4 CrossRefGoogle Scholar
  22. 22.
    Xi J, Wu Z, Teng X, Zhao Y, Сhen L, Qiu X (2008) Self-assembled polyelectrolyte multilayer modified Nafion membrane with suppressed vanadium ion crossover for vanadium redox flow batteries. J Mater Chem 18(11):1232–1238.  https://doi.org/10.1039/b718526j CrossRefGoogle Scholar
  23. 23.
    Jiang SP, Liu Z, Tian ZQ (2006) Layer-by-layer self-assembly of composite polyelectrolyte–Nafion membranes for direct methanol fuel cells. Adv Mater 18:1068–1072CrossRefGoogle Scholar
  24. 24.
    Zhang L, Ling L, Xiao M, Han D, Wang Sh MY (2017) Effectively suppressing vanadium permeation in vanadium redox flow battery application with modified Nafion membrane with nacre-like nanoarchitectures. J Power Sources 352:111–117CrossRefGoogle Scholar
  25. 25.
    Luo Q, Zhang H, Chen J, Qian P, Zhai Y (2008) Modification of Nafion membrane using interfacial polymerization for vanadium redox flow battery applications. J Membr Sci 311:98–103CrossRefGoogle Scholar
  26. 26.
    Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications: I. Proton conductivity and water content. J Electrochem Soc 148:A898–A904CrossRefGoogle Scholar
  27. 27.
    Miyake N, Wainright JS, Savinell RF (2001) Evaluation of a sol-gel derived Nafion/silica hybrid membrane for proton electrolyte membrane fuel cell applications: II. methanol uptake and methanol permeability. J Electrochem Soc 148(8):A905–A909.  https://doi.org/10.1149/1.1383072 CrossRefGoogle Scholar
  28. 28.
    Wang N, Peng S, Lu D, Liu S, Liu Y, Huang K (2012) Nafion/TiO2 hybrid membrane fabricated via hydrothermal method for vanadium redox battery. J Solid State Electrochem 16(4):1577–1584.  https://doi.org/10.1007/s10008-011-1560-z CrossRefGoogle Scholar
  29. 29.
    Park HS, Kim YJ, Hong WH, Choi YS, Lee HK (2005) Influence of morphology on the transport properties of perfluorosulfonate ionomers/polypyrrole composite membrane. Macromolecules 38(6):2289–2295.  https://doi.org/10.1021/ma047650y CrossRefGoogle Scholar
  30. 30.
    Park HS, Kim YJ, Hong WH, Lee HK (2006) Physical and electrochemical properties of Nafion/polypyrrole composite membrane for DMFC. J Membr Sci 272(1-2):28–36.  https://doi.org/10.1016/j.memsci.2005.07.019 CrossRefGoogle Scholar
  31. 31.
    Schwenzer B, Kim S, Vijayakumar M, Yang ZG, Liu J (2011) Correlation of structural differences between Nafion/polyaniline and Nafion/polypyrrole composite membranes and observed transport properties. J Membr Sci 372(1-2):11–19.  https://doi.org/10.1016/j.memsci.2011.01.025 CrossRefGoogle Scholar
  32. 32.
    Kondratenko MS, Karpushkin EA, Gvozdik NA, Gallyamov MO, Stevenson KJ, Sergeyev VG (2017) Influence of aminosilane precursor concentration on physicochemical properties of composite Nafion membranes for vanadium redox flow battery applications. J Power Sources 340:32–39.  https://doi.org/10.1016/j.jpowsour.2016.11.045 CrossRefGoogle Scholar
  33. 33.
    Gribov EN, Krivobokov IM, Parkhomchuk EV, Okunev AG, Spoto G, Parmon VN (2009) Transport properties of Nafion membranes modified with tetrapropylammonioum ions for direct methanol fuel cell applications. Russ J Electrochem 45(2):199–207.  https://doi.org/10.1134/S1023193509020116 CrossRefGoogle Scholar
  34. 34.
    Van Straaten-Nijenhuis WF, Sudholter EJR, de Jong F, Reinhoudt DN, Mahy JWG (1993) Adsorption of alkyl triphenylphosphonium amphiphiles on Nafion membranes. X-ray photoelectron spectroscopy and static secondary ion mass spectrometry analysis. Langmuir 9(7):1657–1663.  https://doi.org/10.1021/la00031a010 CrossRefGoogle Scholar
  35. 35.
    Goddard ED (1993) Polymersurfactant interactions. Polymer and surfactant of opposite charge. In: Goddard ED, Ananthapadmanabhan KP (eds) Interaction of surfactants with polymer and proteins. CRS Press, USA, pp 171–202Google Scholar
  36. 36.
    Lindman B, Thalberg K (1993) Polymer-surfactant interactions. Recent developments. In: Goddard ED, Ananthapadmanabhan KP (eds) Interaction of surfactants with polymer and proteins. CRS Press, USA, pp 203–277Google Scholar
  37. 37.
    Bain CD, Claesson PM, Langevin D, Meszaros R, Nylander T, Stubenrauch C, Titmuss S, von Klitzing R (2010) Complexes of surfactants with oppositely charged polymers at surfaces and in bulk. Adv Colloid Interf Sci 155(1-2):32–49.  https://doi.org/10.1016/j.cis.2010.01.007 CrossRefGoogle Scholar
  38. 38.
    Satake J, Hayakawa K, Komaki M, Maeda T (1984) The cooperative binding isotherms of sodium alkanesulfonates to poly(1-methyl-4-vinilpyridimium chloride). Bull Chem Soc Jpn 57(10):2995–2996.  https://doi.org/10.1246/bcsj.57.2995 CrossRefGoogle Scholar
  39. 39.
    Kasaikin VA, Efremov VA, Zakharova YA, Zezin AB, Kabanov VA (1997) Formation of intramolecule micellar phase as a necessary condition for binding amphiphilic ions to oppositely charged polyelectrolytes. Doklady Akademii nauk USSR 354:126–128Google Scholar
  40. 40.
    Kogej K, Škerjanc J (1999) Fluorescence and conductivity studies of polyelectrolyte-induced aggregation of alkyltrimethylammonium bromides. Langmuir 15(12):4251–4258.  https://doi.org/10.1021/la9811517 CrossRefGoogle Scholar
  41. 41.
    Gao Z, Kwak JCT, Wasylishen ER (1988) An NMR study of the binding between polyelectrolytes and surfactants in aqueous solution. J Colloid Interface Sci 126(1):371–375.  https://doi.org/10.1016/0021-9797(88)90132-4 CrossRefGoogle Scholar
  42. 42.
    Sitar S, Goderis B, Hansson P, Kogej K (2012) Phase diagram and structures in mixtures of poly(styrenesulfonate anion) and alkyltrimethylammonium cations in water: significance of specific hydrophobic interaction. J Phys Chem B 116(15):4634–4645.  https://doi.org/10.1021/jp212263b CrossRefGoogle Scholar
  43. 43.
    Hayakawa K, Kwak J (1982) Surfactant–polyelectrolyte interactions. 1. Binding of dodecyltrimethylammonium ions by sodium dextran sulfate and sodium poly(styrenesulfonate) in aqueous solution in the presence of sodium chloride. J Phys Chem 86(19):3866–3870.  https://doi.org/10.1021/j100216a032 CrossRefGoogle Scholar
  44. 44.
    Popov A, Zakharova J, Wasserman A, Motyakin M, Kasaikin V (2012) Macromolecular and morphological evolution of poly(styrene sulfonate) complexes with tetradecyltrimethylammonium bromide. J Phys Chem B 116:12332–12340CrossRefGoogle Scholar
  45. 45.
    Kogej K (2010) Association and structure formation in oppositely charged polyelectrolyte–surfactant mixtures. Adv Colloid Interf Sci 158(1-2):68–83.  https://doi.org/10.1016/j.cis.2009.04.003 CrossRefGoogle Scholar
  46. 46.
    Malovikova A, Hayakawa K, Kwak J (1984) Surfactant-polyelectrolyte interaction. 4. Surfactant chain length dependence of the binding of alkylpyridinium cations to dextran sulfate. J Phys Chem 88(10):1930–1933.  https://doi.org/10.1021/j150654a002 CrossRefGoogle Scholar
  47. 47.
    Kasaikin VA, Wasserman AM, Zakharova JA, Motyakin MV, Kolbanovskly AD (1999) Effect of polycarbonic acids on the molecular mobility of cationic surfactants in micelles. Colloids Surf A Physicochem Eng Asp 147(1-2):169–178.  https://doi.org/10.1016/S0927-7757(98)00750-X CrossRefGoogle Scholar
  48. 48.
    Kabanov VA, Zezin AB, Rogacheva VB, Khandurina YV, Novoskoltseva OA (1997) Absorption of ionic amphiphiles by oppositely charged polyelectrolyte gels. Macromol Symp 126:79–94CrossRefGoogle Scholar
  49. 49.
    Okuzaki H, Osada Y (1994) Effects of hydrophobic interaction on the cooperative binding of a surfactant to a polymer network. Macromolecules 27:502–506CrossRefGoogle Scholar
  50. 50.
    Neves LA, Benavente J, Coelhoso IM, Crespo JG (2010) Design and characterisation of Nafion membranes with incorporated ionic liquids cations. J Membr Sci 347(1-2):42–52.  https://doi.org/10.1016/j.memsci.2009.10.004 CrossRefGoogle Scholar
  51. 51.
    Neves LA, Coelhoso IM, Crespo JG (2010) Methanol and gas crossover through modified Nafion membranes by incorporation of ionic liquid cations. J Membr Sci 360(1-2):363–370.  https://doi.org/10.1016/j.memsci.2010.05.033 CrossRefGoogle Scholar
  52. 52.
    Mehrian T, de Keizer A, Korteweg AJ, Lyklema J (1993) Thermodynamics of micellization of n-alkylpyridinium chlorides. Colloids Surf A 71(3):255–267.  https://doi.org/10.1016/0927-7757(93)80040-L CrossRefGoogle Scholar
  53. 53.
    Babenko NL, Busev AI, Simakova LK (1970) Complexation in the system vanadium (III)—1-(2-pyridilazo)resorcinol. Zh Anal Khim 25:1539–1546 (in Russian)Google Scholar
  54. 54.
    Pyrzynska K (2005) Recent developments in spectrophotometric methods for determination of vanadium. Microchim Acta 149(3-4):159–164.  https://doi.org/10.1007/s00604-004-0304-5 CrossRefGoogle Scholar
  55. 55.
    Sukhishvili SA, Dhinojwala A, Granick S (1999) How polyelectrolyte adsorption depends on history: a combined Fourier transform infrared spectroscopy in attenuated total reflection and surface forces study. Langmuir 15:8474–8482CrossRefGoogle Scholar
  56. 56.
    Ostrowska J, Narebska A (1983) Infrared study of hydration and association of functional groups in a perfluorinated nation membrane. Part I. Colloid Polym Sci 261:93–98CrossRefGoogle Scholar
  57. 57.
    Ramaswamy N, Hakim N, Mukerjee S (2008) Degradation mechanism study of perfluorinated proton exchange membrane under fuel cell operating conditions. Electrochim Acta 53:3279–3295CrossRefGoogle Scholar
  58. 58.
    Chen T-Y, Leddy J (2000) Ion exchange capacity of Nafion and Nafion composites. Langmuir 16(6):2866–2871.  https://doi.org/10.1021/la991094x CrossRefGoogle Scholar
  59. 59.
    Hayakawa K, Fukutome T, Satake I (1990) Solubilization of water-insoluble dye by a cooperative binding system of surfactant and polyelectrolyte. Langmuir 6:1495–1498CrossRefGoogle Scholar
  60. 60.
    Hayakawa K, Shinohara S, Sasawaki S, Satake I, Kwak J (1995) Solubilization of water-insoluble dyes by polyion/surfactant complexes. Bull Chem Soc Jpn 68:2179–2185CrossRefGoogle Scholar
  61. 61.
    Hwang GS, Kaviany M, Gostick JT, Kientiz B, Weber AZ, Kim MH (2011) Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network. Polymer 52(12):2584–2593.  https://doi.org/10.1016/j.polymer.2011.03.056 CrossRefGoogle Scholar
  62. 62.
    Kiefer JJ, Somasundaran P (1993) Interaction of tetradecyltrimethylammonium bromide with poly(acrylic acid) and (polymethacrylic acid). Effect of charge density. Langmuir 9(5):1187–1192.  https://doi.org/10.1021/la00029a007 CrossRefGoogle Scholar
  63. 63.
    Delsanti M, Dalbuez JP, Spalla O, Belloni L, Drifford M (1993) Phase diagram of polyelectrolyte solutions in the presence of multivalent salts. In: Schmitz K (ed) Micro-ion characterization, vol 548. ACS Symposium series, Washington, DC, pp 381–392.  https://doi.org/10.1021/bk-1994-0548.ch029 CrossRefGoogle Scholar
  64. 64.
    Szentirmay MN, Martin CR (1984) Ion-exchange selectivity of Nafion films on electrode surfaces. Anal Chem 56(11):1898–1902.  https://doi.org/10.1021/ac00275a031 CrossRefGoogle Scholar
  65. 65.
    Martin CR, Freiser H (1981) Ion-selective electrodes based on an ionic polymer. Anal Chem 53(6):902–904.  https://doi.org/10.1021/ac00229a037 CrossRefGoogle Scholar
  66. 66.
    Fujimura M, Hashimoto T, Kawai H (1981) Small-angle X-ray scattering study of perfluorinated ionomer membranes. 1. Origin of two scattering maxima. Macromolecules 14:1309–1315CrossRefGoogle Scholar
  67. 67.
    Gebel G, Lambard J (1997) Small-angle scattering study of water-swollen Perfluorinated ionomer membranes. Macromolecules 30(25):7914–7920.  https://doi.org/10.1021/ma970801v CrossRefGoogle Scholar
  68. 68.
    Moilanen DE, Piletic IR, Fayer MD (2006) Tracking water’s response to structural changes in Nafion membranes. J Phys Chem A 110(29):9084–9908.  https://doi.org/10.1021/jp0623084 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018
corrected publication March/2018

Authors and Affiliations

  1. 1.Chemistry DepartmentLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations