Skip to main content
Log in

Salt effect on hydrophobically modified polyacrylamide-containing crude oil emulsions: stability and rheology study

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

The emulsification of amphiphilic polymer is inevitably affected by the salinity environment in the preparation and flooding process. The variation of emulsions in stability and rheology has a significant influence on the efficiency of polymer flooding. Thus, the effect of NaCl and CaCl2 on the emulsification behavior of hydrophobically modified polyacrylamide (HMPAM) was investigated. A novel dynamic multiple light scattering method was proposed to analyze the variation of emulsion stability. Then, the emulsions with addition of salt were systematically researched in terms of oil droplet size, polymer adsorption, and rheology properties. With the increase of NaCl concentration, the emulsion stability with 1500 mg L−1 HMPAM (above the critical aggregation concentration) decreases monotonically; with the increase of CaCl2 concentration, the emulsion stability rises at first then decreases. It is found that the structural viscosity of the polymer solution is the dominant factor in stabilizing the crude oil emulsion. Modulation effect of the salt ions on the emulsion stability is achieved by regulating the aggregate structure in the aqueous solution. Oscillation-shear-oscillation rheological experiments were conducted to investigate the rheological properties of emulsions. The results show that the viscoelasticity of emulsion system at high salt concentration decreases after high-rate shearing and the recovery of the viscoelasticity is slowed down due to the inhibition of hydrophobic association. This study provides theoretical guidance for elucidating the regulation rules and mechanism of salts on the amphiphilic polymer-containing crude oil emulsions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Hirasaki GJ, Miller CA, Puerto M (2008) Recent advances in surfactant EOR. SPE J 16(4):889–907

    Article  Google Scholar 

  2. Zolfaghari R, Fakhru’l-Razi A, Abdullah LC, Elnashaie SS, Pendashteh A (2016) Demulsification techniques of water-in-oil and oil-in-water emulsions in petroleum industry. Sep Purif Technol 170:377–407. https://doi.org/10.1016/j.seppur.2016.06.026

    Article  CAS  Google Scholar 

  3. Abidin AZ, Puspasari T, Nugroho WA (2012) Polymers for enhanced oil recovery technology. Procedia Chem 4(12):11–16

    Article  CAS  Google Scholar 

  4. Lu C, Liu H, Zhao W, Lu K, Liu Y, Tian J, Tan X (2016) Experimental investigation of in-situ emulsion formation to improve viscous-oil recovery in steam-injection process assisted by viscosity reducer. SPE J.

  5. Guo J, Liu Q, Li M, Wu Z, Christy AA (2006) The effect of alkali on crude oil/water interfacial properties and the stability of crude oil emulsions. Colloids Surf Physicochem Eng Aspects 273(1–3):213–218. https://doi.org/10.1016/j.colsurfa.2005.10.015

    Article  CAS  Google Scholar 

  6. Zhou Y, Wang D, Wang Z, Cao R (2017) The formation and viscoelasticity of pore-throat scale emulsion in porous media. Pet Explor Dev 1:110–116

    Google Scholar 

  7. Islam M, Ali S (1994) Numerical simulation of emulsion flow through porous media. J Can Petrol Technol 33(03). https://doi.org/10.2118/94-03-08

  8. Schmidt DP, Soo H, Radke CJ (2013) Linear oil displacement by the emulsion entrapment process. Soc Pet Eng J 24(3):351–360

    Article  Google Scholar 

  9. Lu H, Feng Y, Huang Z (2008) Association and effective hydrodynamic thickness of hydrophobically associating polyacrylamide through porous media. J Appl Polym Sci 110(3):1837–1843. https://doi.org/10.1002/app.28596

    Article  CAS  Google Scholar 

  10. Morgan SE, Mccormick CL (1990) Water-soluble polymers in enhanced oil recovery. Prog Polym Sci 15(1):103–145. https://doi.org/10.1016/0079-6700(90)90017-U

    Article  CAS  Google Scholar 

  11. Xie K, Lu XG, Li Q, Jiang WD, Yu Q (2016) Analysis of reservoir applicability of hydrophobically associating polymer. SPE J 21(1):1–9. https://doi.org/10.2118/174553-PA

    Article  CAS  Google Scholar 

  12. Perrin P, Lafuma F (1998) Low hydrophobically modified poly(acrylic acid) stabilizing macroemulsions: relationship betwee n copolymer structure and emulsions properties. J Colloid Interf Sci 197(2):317–326. https://doi.org/10.1006/jcis.1997.5224

    Article  CAS  Google Scholar 

  13. Robins MM (1991) Effect of polysaccharide on flocculation and creaming in oil-in-water emulsions. In: ACS Symposium series-American Chemical Society (USA),

  14. Seright RS, Fan TG, Wavrik K, Wan H, Gaillard N, Favero C (2011) Rheology of a new sulfonic associative polymer in porous media. SPE Reserv Eval Eng 14(6):726–734. https://doi.org/10.2118/141355-PA

    Article  CAS  Google Scholar 

  15. Tadros TF, Vandamme A, Levecke B, Booten K, Stevens C (2004) Stabilization of emulsions using polymeric surfactants based on inulin. Adv Colloid Interf Sci 108:207–226

    Article  Google Scholar 

  16. Sun W, Sun D, Wei Y, Liu S, Zhang S (2007) Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect. J Colloid Interf Sci 311(1):228–236

    Article  CAS  Google Scholar 

  17. Akiyama E, Yamamoto T, Yago Y, Hotta H, Ihara T, Kitsuki T (2007) Thickening properties and emulsification mechanisms of new derivatives of polysaccharide in aqueous solution: 2. The effect of the substitution ratio of hydrophobic/hydrophilic moieties. J Colloid Interf Sci 311(2):438–446. https://doi.org/10.1016/j.jcis.2007.03.009

    Article  CAS  Google Scholar 

  18. Xu B, Kang W, Meng L, Yang R, Liu S, Zhang L (2013) Synthesis, aggregation behavior and emulsification characteristic of a multi-sticker amphiphilic polymer. J Macromol Sci A 50(3):302–309. https://doi.org/10.1080/10601325.2013.755855

    Article  CAS  Google Scholar 

  19. Ji Y, Kang W, Hu L, Yang R, Meng L, Fan H (2014) Study on shearing resistance and the stability of O/W emulsion of the inclusive and hydrophobic association systems by activation energy methodology. J Polym Res 21(8):517. https://doi.org/10.1007/s10965-014-0517-1

    Article  Google Scholar 

  20. Xu B, Kang WL, Meng LW, Yang RM, Liu SR, Zhang L (2013) Synthesis, aggregation behavior and emulsification characteristic of a multi-sticker amphiphilic polymer. J Macromol Sci A 50(3):302–309. https://doi.org/10.1080/10601325.2013.755855

    Article  CAS  Google Scholar 

  21. Yang Q, Xin X, Wang L, Lu H, Ren H, Tan Y, Xu G (2014) Modification of the stability of oil-in-water nano-emulsions by polymers with different structures. Colloid Polymer Sci 292(6):1297–1306. https://doi.org/10.1007/s00396-014-3185-0

    Article  CAS  Google Scholar 

  22. Lu Y, Kang W, Jiang J, Chen J, Xu D, Zhang P, Zhang L, Feng H, Wu H (2017) Study on the stabilization mechanism of crude oil emulsion with an amphiphilic polymer using the β-cyclodextrin inclusion method. RSC Adv 7(14):8156–8166. https://doi.org/10.1039/C6RA28528G

    Article  CAS  Google Scholar 

  23. Bera A, Mandal A, Guha B (2013) Synergistic effect of surfactant and salt mixture on interfacial tension reduction between crude oil and water in enhanced oil recovery. J Chem Eng Data 59(1):89–96

    Article  Google Scholar 

  24. Nguyen D, Sadeghi N, Houston C (2012) Chemical interactions and demulsifier characteristics for enhanced oil recovery applications. Energy Fuel 26(5):2742–2750. https://doi.org/10.1021/ef201800b

    Article  CAS  Google Scholar 

  25. Tam KC, Guo L, Jenkins RD, Bassett DR (1999) Viscoelastic properties of hydrophobically modified alkali-soluble emulsion in salt solutions. Polymer 40(23):6369–6379. https://doi.org/10.1016/S0032-3861(98)00857-X

    Article  CAS  Google Scholar 

  26. Chen H, Wu X, Ye Z, Han L, Luo P (2012) Self-assembly behavior of hydrophobically associating polyacrylamide in salt solution. Acta Phys -Chim Sin 28(4):903–908

    CAS  Google Scholar 

  27. Gharibzahedi SMT, Mousavi SM, Hamedi M, Ghasemlou M (2012) Response surface modeling for optimization of formulation variables and physical stability assessment of walnut oil-in-water beverage emulsions. Food Hydrocolloid 26(1):293–301. https://doi.org/10.1016/j.foodhyd.2011.06.006

    Article  CAS  Google Scholar 

  28. Tadros T (2004) Application of rheology for assessment and prediction of the long-term physical stability of emulsions. Adv Colloid Interf Sci 108:227–258

    Article  Google Scholar 

  29. Lemarchand C, Couvreur P, Vauthier C, Costantini D, Gref R (2003) Study of emulsion stabilization by graft copolymers using the optical analyzer Turbiscan. Int J Pharm 254(1):77–82

    Article  CAS  Google Scholar 

  30. Wiśniewska M (2010) Influences of polyacrylic acid adsorption and temperature on the alumina suspension stability. Powder Technol 198(2):258–266. https://doi.org/10.1016/j.powtec.2009.11.016

    Article  Google Scholar 

  31. Vie R, Azema N, Quantin J, Touraud E, Fouletier M (2007) Study of suspension settling: a approach to determine suspension classification and particle interactions. Colloids Surf A Physicochem Eng Asp 298(3):192–200

    Article  CAS  Google Scholar 

  32. Balastre M, Argillier J, Allain C, Foissy A (2002) Role of polyelectrolyte dispersant in the settling behaviour of barium sulphate suspension. Colloids Surf A Physicochem Eng Asp 211(2):145–156. https://doi.org/10.1016/S0927-7757(02)00240-6

    Article  CAS  Google Scholar 

  33. Kang W, Xu B, Wang Y, Li Y, Shan X, An F, Liu J (2011) Stability mechanism of W/O crude oil emulsion stabilized by polymer and surfactant. Colloids Surf A Physicochem Eng Asp 384(1):555–560. https://doi.org/10.1016/j.colsurfa.2011.05.017

    Article  CAS  Google Scholar 

  34. Yang Q, Xin X, Wang L, Lu H, Ren H, Tan Y, Xu G (2014) Modification of the stability of oil-in-water nano-emulsions by polymers with different structures. Colloid Polym Sci 292(6):1297–1306. https://doi.org/10.1007/s00396-014-3185-0

    Article  CAS  Google Scholar 

  35. Skinner L, Sambles J (1972) The kelvin equation—a review. J Aerosol Sci 3(3):199–210. https://doi.org/10.1016/0021-8502(72)90158-9

    Article  CAS  Google Scholar 

  36. Gouldby SJ, Gunning PA, Hibberd DJ, Robins MM (1991) Creaming in flocculated oil in water emulsions. Food Polymers Gels Colloids 82:244

    Article  Google Scholar 

  37. Meng L, Kang W, Zhang L, Yang R (2012) Rheological rules and influencing factors of amphiphilici polymer solution. Polymer Mater Sci Eng 28(10):55–58

    CAS  Google Scholar 

  38. Lin Y, Skaff H, Emrick T, Dinsmore A, Russell TP (2003) Nanoparticle assembly and transport at liquid-liquid interfaces. Science 299(5604):226–229

    Article  CAS  Google Scholar 

  39. Lin Y, Böker A, Skaff H, Cookson D, Dinsmore A, Emrick T, Russell TP (2005) Nanoparticle assembly at fluid interfaces: structure and dynamics. Langmuir 21(1):191–194

    Article  CAS  Google Scholar 

  40. Yang F, Liu S, Xu J, Lan Q, Wei F, Sun D (2006) Pickering emulsions stabilized solely by layered double hydroxides particles: the effect of salt on emulsion formation and stability. J Colloid Interf Sci 302(1):159–169. https://doi.org/10.1016/j.jcis.2006.06.015

    Article  CAS  Google Scholar 

  41. Kundu P, Agrawal A, Mateen H, Mishra IM (2013) Stability of oil-in-water macro-emulsion with anionic surfactant: effect of electrolytes and temperature. Chem Eng Sci 102:176–185. https://doi.org/10.1016/j.ces.2013.07.050

    Article  CAS  Google Scholar 

  42. Rı́os G, Pazos C, Coca J (1998) Destabilization of cutting oil emulsions using inorganic salts as coagulants. Colloids Surf A Physicochem Eng Asp 138(2):383–389. https://doi.org/10.1016/S0927-7757(97)00083-6

    Google Scholar 

  43. Ghannam MT, Esmail N (2005) Yield stress behavior for crude oil–polymer emulsions. J Pet Sci Eng 47(3):105–115. https://doi.org/10.1016/j.petrol.2005.03.001

    Article  CAS  Google Scholar 

  44. Ghannam MT (2004) Creep–recovery experimental investigation of crude oil–polymer emulsions. J Appl Polym Sci 92(1):226–237. https://doi.org/10.1002/app.13645

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Science and Technology Major Projects of China (2017ZX05009-004), National Natural Science Foundation of China (No. 51774309), and Science Foundation of China University of Petroleum, Beijing (No. 2462015YJRC033).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hairong Wu or Wanli Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Wu, H., Meng, Z. et al. Salt effect on hydrophobically modified polyacrylamide-containing crude oil emulsions: stability and rheology study. Colloid Polym Sci 296, 515–527 (2018). https://doi.org/10.1007/s00396-018-4267-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-018-4267-1

Keywords

Navigation