Advertisement

Physico-mechanical properties of graphene oxide/poly(vinyl alcohol) composites

  • Tatiana V. Panova
  • Anna A. Efimova
  • Aleksandr V. Efimov
  • Anna K. BerkovichEmail author
Invited Article
  • 33 Downloads

Abstract

Composite films were prepared using poly(vinyl alcohol) (PVA) and graphene oxide (GO) by solution casting technique, and their morphology, physical, and mechanical properties were studied. The hexagonal array of diffraction peaks reveals that GO is uniformly distributed in the polymer matrix, indicating the excellent compatibility of the filler with the polymer. GO incorporation does not change PVA degree of crystallinity, but increases the thermal stability (the temperature of degradation) of the polymer. For PVA/GO composite film with 4 wt% of the filler, the tensile strength as well as the Young’s modulus increases compared to that of the neat PVA film. At the same time, the GO addition led to a sharp decrease in the elongation at break of the sample. In order to improve the plasticity of the composite film, cold rolling processing of the composite PVA/GO film was performed which is known to suppress the tendency of nanocomposite to brittle fracture.

Keywords

Poly(vinyl alcohol) Graphene oxide Composite film Mechanical properties Rolling 

Notes

Funding

This work was supported by Russian science foundation (project no. 17-73-20266).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401.  https://doi.org/10.1016/j.progpolymsci.2009.09.003 CrossRefGoogle Scholar
  2. 2.
    Chen D, Wang X, Liu T, Wang X, Li J (2010) Electrically conductive poly(vinyl alcohol) hybrid films containing graphene and layered double hydroxide fabricated via layer-by-layer self-assembly. ACS Appl Mater Interfaces 2(7):2005–2011.  https://doi.org/10.1021/am100307v CrossRefGoogle Scholar
  3. 3.
    Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44(11):4415–4421.  https://doi.org/10.1021/ma200176r CrossRefGoogle Scholar
  4. 4.
    Khan U, May P, O’Neill A, Coleman JN (2010) Development of stiff, strong, yet tough composites by the addition of solvent exfoliated graphene to polyurethane. Carbon 48(14):4035–4041.  https://doi.org/10.1016/j.carbon.2010.07.008 CrossRefGoogle Scholar
  5. 5.
    Tyler T, Shenderova O, Cunningham G, Walsh J, Drobnik J, McGuire G (2006) Thermal transport properties of diamond-based nanofluids and nanocomposites. Diam Relat Mater 15:2078–2081.  https://doi.org/10.1016/j.diamond.2006.08.007 CrossRefGoogle Scholar
  6. 6.
    Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204.  https://doi.org/10.1016/j.polymer.2008.04.017 CrossRefGoogle Scholar
  7. 7.
    Ge L, Zhu Z, Li F, Liu S, Wang L, Tang X, Rudolph V (2011) Investigation of gas permeability in carbon nanotube (CNT) polymer matrix membranes via modifying CNTs with functional groups/metals and controlling modification location. J Phys Chem C 115:6661–6670.  https://doi.org/10.1021/jp1120965 CrossRefGoogle Scholar
  8. 8.
    Kim S, Fornasiero F, Park HG, In JB, Meshot E, Giraldo G, Stadermann M, Fireman M, Shan J, Grigoropoulos CP, Bakajin O (2014) Fabrication of flexible, aligned carbon nanotube/polymer composite membranes by in-situ polymerization. J Membr Sci 460:91–98.  https://doi.org/10.1016/j.memsci.2014.02.016 CrossRefGoogle Scholar
  9. 9.
    Yao S, Li Y, Zhou Z, Yan H (2015) Graphene oxide-assisted preparation of poly(vinyl alcohol)/carbon nanotube/reduced grapheme oxide nanofibers with high carbon content by electrospinning technology. RSC Adv 5:91878–91887.  https://doi.org/10.1039/c5ra15985g CrossRefGoogle Scholar
  10. 10.
    Gao C, Liu P, Ding Y, Li T, Wang F, Chen J, Zhang S, Li, Yang M (2018) Non-contact percolation of unstable graphene networks in poly(styrene-co-acrylonitrile) nanocomposites: electrical and rheological properties. Compos Sci Technol 155(8):41–49.  https://doi.org/10.1016/j.compscitech.2017.11.023 CrossRefGoogle Scholar
  11. 11.
    Li A, Zhang C, Zhang YF (2017) Thermal conductivity of graphene-polymer composites: mechanisms, properties, and applications. Polymers 9:437–454.  https://doi.org/10.3390/polym9090437 CrossRefGoogle Scholar
  12. 12.
    Zhang D, Yang S, Chen Y, Liu S, Zhao H, Gu J (2018) 60Co-ray irradiation crosslinking of chitosan/graphene oxide composite film: swelling, thermal stability, mechanical, and antibacterial properties. Polymers 10:294–308.  https://doi.org/10.3390/polym10030294 CrossRefGoogle Scholar
  13. 13.
    Wang X, Song M (2013) Toughening of polymers by graphene. Nanomater Energy 2(5):265–278.  https://doi.org/10.1680/nme.13.00024 CrossRefGoogle Scholar
  14. 14.
    Cano M, Khan U, Sainsbury T, O’Neill A, Wang Z, McGovern I, Maser WK, Benito AM, Coleman JN (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371.  https://doi.org/10.1016/j.carbon.2012.09.046 CrossRefGoogle Scholar
  15. 15.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339–1339CrossRefGoogle Scholar
  16. 16.
    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482.  https://doi.org/10.1021/jp9731821 CrossRefGoogle Scholar
  17. 17.
    De Jesus LR, Dennis RV, Depner SW, Jaye C, Fischer DA, Banerjee S (2013) Inside and outside: X-ray absorption spectroscopy mapping of chemical domains in graphene oxide. J Phys Chem Lett 4(18):3144–3151.  https://doi.org/10.1021/jz401717j CrossRefGoogle Scholar
  18. 18.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228–240.  https://doi.org/10.1039/b917103g CrossRefGoogle Scholar
  19. 19.
    Wilson NR, Pandey PA, Beanland R, Rourke JP, Lupo U, Rowlands G, Römer RA (2010) On the structure and topography of free-standing chemically modified grapheme. New J Phys 12:125010–125031.  https://doi.org/10.1088/1367-2630/12/12/125010 CrossRefGoogle Scholar
  20. 20.
    Johnson JA, Benmore CJ, Stankovich S, Ruoff RS (2009) A neutron diffraction study of nano-crystalline graphite oxide. Carbon 47(9):2239–2243.  https://doi.org/10.1016/j.carbon.2009.04.016 CrossRefGoogle Scholar
  21. 21.
    Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD (2009) Atomic force and scanning tunneling microscopy imaging of graphene nanosheets derived from graphite oxide. Langmuir 25(1):5957–5968.  https://doi.org/10.1021/la804216z CrossRefGoogle Scholar
  22. 22.
    Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7(11):3499–3503.  https://doi.org/10.1021/nl072090c CrossRefGoogle Scholar
  23. 23.
    Wilson NR, Pandey PA, Beanland R, Young RJ, Kinloch IA, Gong L, Liu Z, Suenaga K, Rourke JP, York SJ, Sloan J (2009) Graphene oxide: structural analysis and application as a highly transparent support for electron microscopy. ACS Nano 3(9):2547–2556.  https://doi.org/10.1021/nn900694t CrossRefGoogle Scholar
  24. 24.
    Hirata M, Gotou T, Ohba M (2005) Thin-film particles of graphite oxide. 2: preliminary studies for internal micro fabrication of single particle and carbonaceous electronic circuits. Carbon 43(3):503–510.  https://doi.org/10.1016/j.carbon.2004.10.009 CrossRefGoogle Scholar
  25. 25.
    Szabo T, Szeri A, Dekany I (2005) Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43(1):87–94.  https://doi.org/10.1016/j.carbon.2004.08.025 CrossRefGoogle Scholar
  26. 26.
    Sapalidis A, Sideratou Z, Panagiotaki KN, Sakellis E, Kouvelos EP, Papageorgiou S, Katsaros F (2018) Fabrication of antibacterial poly(vinyl alcohol) nanocomposite films containing dendritic polymer functionalized multi-walled carbon nanotubes. Front Mater 5:11.  https://doi.org/10.3389/fmats.2018.00011 CrossRefGoogle Scholar
  27. 27.
    Chiellini E, Corti A, D’Antone S, Solaro R (2003) Biodegradation of poly(vinyl alcohol) based materials. Prog Polym Sci 28(6):963–1014.  https://doi.org/10.1016/S0079-6700(02)00149-1 CrossRefGoogle Scholar
  28. 28.
    Ghoshal S, Denner P, Stapf S, Mattea C (2012) Study of the formation of poly(vinyl alcohol) films. Macromolecules 45(4):1913–1923.  https://doi.org/10.1021/ma2023292 CrossRefGoogle Scholar
  29. 29.
    Rathod SG, Bhajantri RF, Ravindrachary V, Pujari PK, Sheela T, Naik J (2014) Thermal, mechanical and dielectric properties of poly(vinyl alcohol)/graphene oxide composites. AIP Conf Proc 1591:1769–1771.  https://doi.org/10.1063/1.4873107 CrossRefGoogle Scholar
  30. 30.
    Morimune S, Nishino T, Goto T (2012) Graphene, poly(vinyl alcohol)/graphene oxide nanocomposites prepared by a simple eco-process. Polym J 44:1056–1063.  https://doi.org/10.1038/pj.2012.58 CrossRefGoogle Scholar
  31. 31.
    Ma J, Li Y, Yin X, Xu Y, Yuea J, Bao J, Zhou T (2016) Poly(vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv 6:49448–49458.  https://doi.org/10.1039/C6RA08760D CrossRefGoogle Scholar
  32. 32.
    Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543.  https://doi.org/10.1016/j.carbon.2009.08.022 CrossRefGoogle Scholar
  33. 33.
    Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363.  https://doi.org/10.1021/ma902862u CrossRefGoogle Scholar
  34. 34.
    Liu D, Bian Q, Li Y, Wang Y, Xiang A, Tian H (2016) Effect of oxidation degrees of graphene oxide on the structure and properties of poly (vinyl alcohol) composite films. Compos Sci Technol 129:146–152.  https://doi.org/10.1016/j.compscitech.2016.04.004 CrossRefGoogle Scholar
  35. 35.
    Yurovskikh SV, Chvalun SN, Lyoo WS (2001) Structure and properties of poly(vinyl alcohol) of different stereoregularity. Polym Sci A 43(3):278–284Google Scholar
  36. 36.
    Patil V, Dennis RV, Rout TK, Banerjeeb S, Yadav GD (2014) Graphene oxide and functionalized multi walled carbon nanotubes as epoxy curing agents: a novel synthetic approach to nanocomposites containing active nanostructured fillers. RSC Adv 4:49264–49272.  https://doi.org/10.1039/c4ra09693b CrossRefGoogle Scholar
  37. 37.
    Van Melick HGH, Govaert LE, Raas B, Nauta WJ, Meijer HEH (2003) Kinetics of ageing and re-embrittlement of mechanically rejuvenated polystyrene. Polymer 44(4):1171–1179.  https://doi.org/10.1016/S0032-3861(02)00863-7 CrossRefGoogle Scholar
  38. 38.
    Bazhenov SL, Efimov AV, Sosnovskii IV, Bol’shakova AV, Kechek’yan AS, Volynskii AL (2015) Plastic deformation of polyethylene terephthalate films during rolling. Polym Sci A 57(4):425–429.  https://doi.org/10.1134/S0965545X1504001X CrossRefGoogle Scholar
  39. 39.
    Qiu J, Murata T, Takahashi K, Wu X (2013) Plastic deformation mechanism of crystalline polymer materials during the rolling process. J Mater Sci 48(5):1920–1931.  https://doi.org/10.1007/s10853-012-6957-2 CrossRefGoogle Scholar
  40. 40.
    Yang G, Ponting M, Thompson G, Hiltner A, Baer E (2012) Puncture deformation and fracture mechanism of oriented polymers. J Appl Polym Sci 124:2524–2536.  https://doi.org/10.1002/app.34109 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Tatiana V. Panova
    • 1
  • Anna A. Efimova
    • 1
  • Aleksandr V. Efimov
    • 1
  • Anna K. Berkovich
    • 1
    Email author
  1. 1.Faculty of ChemistryLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations