Advertisement

Colloid and Polymer Science

, Volume 296, Issue 3, pp 413–426 | Cite as

Nitrogen-containing porous carbon materials by twin polymerization

  • Christian Schliebe
  • Julian Noll
  • Sebastian Scharf
  • Thomas Gemming
  • Andreas Seifert
  • Stefan Spange
  • Daniel Lehmann
  • Dietrich R. T. Zahn
  • Benjamin Fiedler
  • Joachim Friedrich
  • Thomas Blaudeck
  • Heinrich LangEmail author
Original Contribution
  • 324 Downloads

Abstract

The preparation of Si(OCH2 c C4H3NR)4 (5, R = Me; 6, R = H) by the reaction of 2-HOCH2- c C4H3NR (3, R = Me; 4, R = H) with SiCl4 in the ratio of 4:1 in the presence of NEt3 is described. The thermal behavior of twin monomers 5 and 6 was investigated by thermogravimetry and differential scanning calorimetry. Compound 6 shows with 93 °C the lowest polymerization temperature for twin monomers reported so far. In addition to the thermal-induced twin polymerization of 5 and 6, the acidic initiation and copolymerization with 2,2′-spiro-bi[4H-1,3,2-benzodioxasiline] was investigated. The resulting hybrid materials were characterized by 1H, 13C{1H}, and 29Si{1H} solid-state NMR spectroscopy confirming the transformation of the SiOCH2 moieties into CH2 groups enabling the formation of the respective polymers. These results are supported by HAADF-STEM studies, showing the typical microstructuring of a twin polymer. Furthermore, nitrogen-containing porous carbon materials with a surface area between 200 and 800 m2 g−1 and a nitrogen content of up to 9.1% were obtained. The chemical nature of the incorporated nitrogen was investigated by XPS spectroscopy, revealing that mostly pyrrolic nitrogen is observed, but also pyridinic species are present.

Graphical abstract

The straightforward preparation of nitrogen-rich porous carbon materials by the twin polymerization of Si(OCH2-2- c C4H3NR)4 (R = Me, H) and 2,2′-spiro-bi[4H-1,3,2-benzodioxasiline] is reported.

Keywords

Twin monomer Twin polymerization Copolymerization Silicon orthoester Hybrid material Porous carbon Nitrogen doping 

Notes

Acknowledgements

We like to thank T. Jagemann and Prof. Dr. M. Hietschold for SEM imaging of different samples and B. Kempe and Dr. R. Buschbeck for ESI-TOF mass spectrometry measurements.

Funding information

This study was funded by the Deutsche Forschungsgemeinschaft (grant number FOR 1497 Organic-Inorganic Nanocomposites by Twin Polymerization) and the Cluster of Excellence MERGE (grant number DFG EXC 1075, MERGE Technologies for Multifunctional Lightweight Structures).

Compliance with ethical standards

Additional analytical data, further solid-state NMR spectra, TG and DSC traces, N2 adsorptions/desorption isotherms, TEM images, XPS data/spectra, and DFT data are available online free of charge atv the publishers homepage.

This article is based on the dissertation of Dr. Christian Schliebe (http://www.qucosa.de/fileadmin/data/qucosa/documents/17836/Dissertation%20C.%20Schliebe_Verteidigung.pdf).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2017_4254_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1683 kb)

References

  1. 1.
    Golberg D, Bando Y, Huang Y, Terao T (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4(6):2979–2993.  https://doi.org/10.1021/nn1006495 CrossRefGoogle Scholar
  2. 2.
    Shen W, Fan W (2013) Nitrogen-containing porous carbons: synthesis and application. J Mater Chem A 1(4):999–1013.  https://doi.org/10.1039/C2TA00028H CrossRefGoogle Scholar
  3. 3.
    Lee YJ, Radovic LR (2003) Oxidation inhibition effectsof phosphorus and boronin carbon oxidation. Carbon N Y 41(10):1987–1997.  https://doi.org/10.1016/S0008-6223(03)00199-4 CrossRefGoogle Scholar
  4. 4.
    Da Silva RR, Torres JHS, Kopelevich Y (2001) Indication of superconductivity at 35 K in graphite-sulfur composites. Phys Rev Lett 87:1–4CrossRefGoogle Scholar
  5. 5.
    Paraknowitsch JP, Thomas A (2013) Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ Sci 6:2839CrossRefGoogle Scholar
  6. 6.
    Matter PH, Ozkan US (2006) Non-metal catalysts for dioxygen reduction in an acidic electrolyte. Catal Lett 109(3-4):115–123.  https://doi.org/10.1007/s10562-006-0067-1 CrossRefGoogle Scholar
  7. 7.
    Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe–N/C and Co–N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53(15):4937–4951.  https://doi.org/10.1016/j.electacta.2008.02.012 CrossRefGoogle Scholar
  8. 8.
    Tuaev X, Paraknowitsch JP, Illgen R, Thomas A, Strasser P (2012) Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Phys Chem Chem Phys 14(18):6444–6447.  https://doi.org/10.1039/c2cp40760d CrossRefGoogle Scholar
  9. 9.
    Yun YS, Kim D, Park HH, Tak Y, Jin HJ (2012) 3D hierarchical porous carbons containing numerous nitrogen atoms as catalyst supports for PEMFCs. Synth Met 162(24):2337–2341.  https://doi.org/10.1016/j.synthmet.2012.11.005 CrossRefGoogle Scholar
  10. 10.
    Sevilla M, Valle-Vigõn P, Fuertes AB (2011) N-doped polypyrrole-based porous carbons for CO2 capture. Adv Funct Mater 21(14):2781–2787.  https://doi.org/10.1002/adfm.201100291 CrossRefGoogle Scholar
  11. 11.
    Hao GP, Li WC, Qian D, Lu AH (2010) Rapid synthesis of nitrogen-dopedporous carbonmonolith for CO2 capture. Adv Mater 22(7):853–857.  https://doi.org/10.1002/adma.200903765 CrossRefGoogle Scholar
  12. 12.
    Jeon JW, Sharma R, Meduri P, Arey BW, Schaef HT, Lutkenhaus JL, Lemmon JP, Thallapally PK, Nandasiri MI, McGrail BP, Nune SK (2014) In situ one-step synthesis of hierarchical nitrogen-doped porous carbon for high performance super-capacitors. ACS Appl Mater Interfaces 6(10):7214–7222.  https://doi.org/10.1021/am500339x CrossRefGoogle Scholar
  13. 13.
    Chen XY, Xie DH, Chen C, Liu JW (2013) High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer. J Colloid Interface Sci 393:241–248.  https://doi.org/10.1016/j.jcis.2012.10.024 CrossRefGoogle Scholar
  14. 14.
    Xu B, Zheng D, Jia M, Cao G, Yang Y (2013) Nitrogen-doped porous carbon simply prepared by pyrolyzing a nitrogen-containing organic salt for supercapacitors. Electrochim Acta 98:176–182CrossRefGoogle Scholar
  15. 15.
    Li T, Yang G, Wang J, Zhou Y, Han H (2013) Excellent electrochemical performance of nitrogen-enriched hierarchical porous carbon electrodes prepared using nano-CaCO3 as template. J Solid State Electrochem 17(10):2651–2660.  https://doi.org/10.1007/s10008-013-2167-3 CrossRefGoogle Scholar
  16. 16.
    Chen Z, Higgins D, Yu A, Zhang L, Zhang J (2011) A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ Sci 4:3167CrossRefGoogle Scholar
  17. 17.
    Jaouen F, Proietti E, Lefèvre M, Chenitz R, Dodelet J-P, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4:114CrossRefGoogle Scholar
  18. 18.
    Chen T, Pan L, Loh TAJ, Chua DHC, Yao Y, Chen Q, Li D, Qin W, Sun Z (2014) Porous nitrogen-doped carbon microspheres as anode materials for lithium ion batteries. Dalton Trans 43(40):14931–14935.  https://doi.org/10.1039/C4DT01223B CrossRefGoogle Scholar
  19. 19.
    Chen XY, Chen C, Zhang JZ, Xie DH (2013) Synthesis and capacitive performance of nitrogen doped porous carbons derived from sodium carboxymethyl starch. Powder Technol 246:201–209.  https://doi.org/10.1016/j.powtec.2013.05.023 CrossRefGoogle Scholar
  20. 20.
    Grund S, Kempe P, Baumann G, Seifert A, Spange S (2007) Zwillingspolymerisation: ein Weg zur Synthese von Nanokompositen. Angew Chem Int Ed 46(4):628–632.  https://doi.org/10.1002/anie.200504327 CrossRefGoogle Scholar
  21. 21.
    Löschner T, Mehner A, Grund S, Seifert A, Pohlers A, Lange A, Cox G, Hähnle H-J, Spange S (2012) Ein modularer Ansatz zur gezielten Herstellung nanostrukturierter Hybridmaterialien: Die Simultane Zwillingspolymerisation. Angew Chem Int Ed 51(13):3258–3261.  https://doi.org/10.1002/anie.201108011 CrossRefGoogle Scholar
  22. 22.
    Kempe P, Löschner T, Adner D, Spange S (2011) Selective ring opening of 4H-1,3-2-benzodioxasiline twin monomer. New J Chem 35(12):2735–2739.  https://doi.org/10.1039/c1nj20654k CrossRefGoogle Scholar
  23. 23.
    Kempe P, Löschner T, Auer AA, Seifert A, Cox G, Spange S (2014) Thermally induced twin polymerisation of 4H-1,3,2-benzodioxasilines. Chem Eur J 20(26):8040–8053.  https://doi.org/10.1002/chem.201400038 CrossRefGoogle Scholar
  24. 24.
    Spange S, Grund S (2009) Nanostructured organic inorganic composites by twin-polymerisation of hybrid-monomers. Adv Mater 21(20):2111–2116.  https://doi.org/10.1002/adma.200802797 CrossRefGoogle Scholar
  25. 25.
    Spange S, Kempe P, Seifert A, Auer AA, Ecorchard P, Lang H, Falke M, Hietschold M, Pohlers A, Hoyer W, Cox G, Kockrick E, Kaskel S (2009) Nanokomposite mit 0.5 bis 3 nm großen Strukturdomänen durch Polymerisation von Silicium-Spiroverbindungen. Angew Chem Int Ed Eng 48(44):8254–8258.  https://doi.org/10.1002/anie.200901113 CrossRefGoogle Scholar
  26. 26.
    Böttger-Hiller F, Kempe P, Baumann G, Hietschold M, Schäfer P, Zahn DRT, Petzold A, Thurn-Albrecht T, Spange S (2013) The controlled synthesis of carbon tubes and rods by template-assisted twin polymerization. Adv Mater Sci Eng 2013:1–8.  https://doi.org/10.1155/2013/872019 CrossRefGoogle Scholar
  27. 27.
    Böttger-Hiller F, Kempe P, Cox G, Panchenko A, Janssen N, Petzold A, Thurn-Albrecht T, Borchardt L, Rose M, Kaskel S, Georgi C, Lang H, Spange S (2013) Zwillingspolymerisation an sphärischen Hart-Templaten - ein Weg zu größeneinstellbaren Kohlenstoffhohlkugeln mit mikro- oder mesoporöser Schale. Angew Chem 125(23):6204–6207.  https://doi.org/10.1002/ange.201209849 CrossRefGoogle Scholar
  28. 28.
    Kitschke P, Auer AA, Löschner T, Seifert A, Spange S, Rüffer T, Lang H, Mehring M (2014) Microporous carbon and mesoporous silica by use of twin polymerization—an integrated experimental and theoretical approach on precursor reactivity. ChemPlusChem 79(7):1009–1023.  https://doi.org/10.1002/cplu.201402029 CrossRefGoogle Scholar
  29. 29.
    Böttger-Hiller F, Mehner A, Anders S, Kroll L, Cox G, Simon F, Spange S (2012) Sulphur-doped porous carbon from a thiophene-based twin monomer. Chem Commun 48:10568–10570CrossRefGoogle Scholar
  30. 30.
    Kirillova A, Schliebe C, Stoychev G, Jakob A, Lang H, Synytska A (2015) Si(OCH2Fc)4: synthesis, electrochemical behavior, and twin polymerization. ACS Appl Mater Interfaces 7:21218–21225CrossRefGoogle Scholar
  31. 31.
    Brückner J, Thieme S, Böttger-Hiller F, Bauer I, Grossmann HT, Strubel P, Althues H, Spange S, Kaskel S (2014) Carbon-based anodes for lithium-sulfur full cells with high cycle stability. Adv Funct Mater 24(9):1284–1289.  https://doi.org/10.1002/adfm.201302169 CrossRefGoogle Scholar
  32. 32.
    Leonhardt C, Brumm S, Seifert A, Cox G, Lange A, Rüffer T, Schaarschmidt D, Lang H, Jöhrmann N, Hietschold M, Simon F, Mehring M (2013) Tin oxide nanoparticles and SnO2/SiO2 hybrid materials by twin polymerization using tin(IV) alkoxides. ChemPlusChem 78(11):1400–1412.  https://doi.org/10.1002/cplu.201200242 CrossRefGoogle Scholar
  33. 33.
    Leonhardt C, Brumm S, Seifert A, Lange A, Csihony S, Mehring M (2014) Tin nanoparticles in carbon/silica hybrid materials by the use of twin polymerization. ChemPlusChem 79(10):1440–1447.  https://doi.org/10.1002/cplu.201402137 CrossRefGoogle Scholar
  34. 34.
    Kitschke P, Auer AA, Seifert A, Rüffer T, Lang H, Mehring M (2014) Synthesis, characterization and twin polymerization of a novel dioxagermine. Inorg Chim Acta 409:472–478.  https://doi.org/10.1016/j.ica.2013.09.052 CrossRefGoogle Scholar
  35. 35.
    Böttger-Hiller F, Lungwitz R, Seifert A, Hietschold M, Schlesinger M, Mehring M, Spange S (2009) Nanoskaliges Wolframtrioxid durch In-situ-Zwillingspolymerisation. Angew Chem Int Ed Eng 48(47):8878–8881.  https://doi.org/10.1002/anie.200903636 CrossRefGoogle Scholar
  36. 36.
    Mehner A, Pohlers A, Hoyer W, Cox G, Spange S (2013) Chirality and reversible solid state phase transition of a tetranuclear titanium oxido cluster. Macromol Chem Phys 214(9):1000–1010.  https://doi.org/10.1002/macp.201200629 CrossRefGoogle Scholar
  37. 37.
    Mehner A, Rüffer T, Lang H, Pohlers A, Hoyer W, Spange S (2008) Synthesis of nanosized TiO2 by cationic polymerization of (μ4-oxido)-hexakis(μ-furfuryloxo)-octakis(furfuryloxo)tetra-titanium. Adv Mater 20(21):4113–4117.  https://doi.org/10.1002/adma.200801376 CrossRefGoogle Scholar
  38. 38.
    Schliebe C, Gemming T, Noll J, Mertens L, Mehring M, Seifert A, Spange S, Lang H (2015) Zirconium and hafnium twin monomers for mixed oxides. ChemPlusChem 80(3):559–567.  https://doi.org/10.1002/cplu.201402338 CrossRefGoogle Scholar
  39. 39.
    Schliebe C, Gemming T, Mertens L, Mehring M, Lang H (2014) Twin polymerization: a unique and efficient tool for supporting silver nanoparticles on highly porous carbon and silica. Eur J Inorg Chem 2014:3161–3163CrossRefGoogle Scholar
  40. 40.
    Chen S, Qi P, Chen J, Yuan Y (2015) Platinum nanoparticles supported on N-doped carbon nanotubes for the selective oxidation of glycerol to glyceric acid in a base-free aqueous solution. RSC Adv 5:31566–31574CrossRefGoogle Scholar
  41. 41.
    Cui X, Li Y, Bachmann S, Scalone M, Surkus A-E, Junge K, Topf C, Beller M (2015) Synthesis and characterization of iron–nitrogen-doped graphene/core–shell catalysts: efficient oxidative dehydrogenation of N-heterocycles. J Am Chem Soc 137:10652–10658CrossRefGoogle Scholar
  42. 42.
    Li Z, Liu J, Huang Z, Yang Y, Xia C, Li F (2013) One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and application in the domino carbonylation. ACS Catal 3:839–845CrossRefGoogle Scholar
  43. 43.
    Silverstein RM, Ryskiewicz EE, Willard C, Koehler RC (1955) Improved synthesis of 2-pyrrolealdehyde and of N-methyl-2-pyrrolaldehyde. Further studies of pyrrole alcohols. J Org Chem 20(5):668–672.  https://doi.org/10.1021/jo01123a019 CrossRefGoogle Scholar
  44. 44.
    Ryppa C, Senge MO, Hatscher SS, Kleinpeter E, Wacker P, Schilde U, Wiehe A (2005) Synthesis of mono- and disubstituted porphyrins: A- and 5,10-A2-type systems. Chem Eur J 11:3427–3442CrossRefGoogle Scholar
  45. 45.
    Göring M, Seifert A, Schreiter K, Müller P, Spange S (2014) A non-aqueous procedure to synthesize amino group bearing nanostructured organic–inorganic hybrid materials. Chem Commun 50(68):9753–9756.  https://doi.org/10.1039/C4CC03640A CrossRefGoogle Scholar
  46. 46.
    Modak A, Mondal J, Bhaumik A (2013) Porphyrin based porous organic polymer as bi-functional catalyst for selective oxidation and Knoevenagel condensation reactions. Appl Catal A Gen 459:41–51.  https://doi.org/10.1016/j.apcata.2013.03.036 CrossRefGoogle Scholar
  47. 47.
    Abraham RJ, Lapper RD, Smith KM, Unsworth JF (1974) Carbon-13 nuclear magnetic resonance spectra of some substituted pyrroles. J Chem Soc, Perkin Trans 2 (9):1004.  https://doi.org/10.1039/p29740001004
  48. 48.
    Choy J, Jaime-Figueroa S, Jiang L, Wagner P (2008) Novel practical deprotection of N-Boc compounds using fluorinated alcohols. Synth Commun 38(21):3840–3853.  https://doi.org/10.1080/00397910802238718 CrossRefGoogle Scholar
  49. 49.
    Bellur E, Görls H, Langer P (2005) Synthesis of 2-alkylidenepyrrolidines, pyrroles, and indoles by condensation of silyl enol ethers and 1,3-bis-silyl enol ethers with 1-azido-2,2-dimethoxyethane and subsequent reductive cyclization. J Organomet Chem 70(12):4751–4761.  https://doi.org/10.1021/jo047856x CrossRefGoogle Scholar
  50. 50.
    Gossauer A, Neidhart W, Scott AI (1983) Total synthesis of a 15N-labelled macrocyclic tetrapyrrole of the preuroporphyrinogen type. J Chem Soc Chem Commun 94:883CrossRefGoogle Scholar
  51. 51.
    Auer A, Richter A, Berezkin A, Guseva DV, Spange S (2012) Theoretical study of twin polymerization—from chemical reactivity to structure formation. Theory Simul 21(9):615–628.  https://doi.org/10.1002/mats.201200036 CrossRefGoogle Scholar
  52. 52.
    Tchernook I, Prehl J, Friedrich J (2015) Quantum chemical investigation of the counter anion in the acid catalyzed initiation of 2,20-spirobi[4H-1,3,2-benzodioxasiline]polymerization. Polymer 60:241–251.  https://doi.org/10.1016/j.polymer.2015.01.042 CrossRefGoogle Scholar
  53. 53.
    Lastoskie C, Gubbins KE, Quirke N (1993) Pore size distribution analysis of microporous carbons: a density functional theory approach. J Phys Chem 97(18):4786–4796.  https://doi.org/10.1021/j100120a035 CrossRefGoogle Scholar
  54. 54.
    Donohue M, Aranovich G (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interf Sci 76-77:137–152.  https://doi.org/10.1016/S0001-8686(98)00044-X CrossRefGoogle Scholar
  55. 55.
    Löschner T, Mehner A, Grund S, Seifert A, Pohlers A, Lange A, Cox G, Hähnle H-J, Spange S (2012) Ein modularer Ansatz zur gezielten Herstellung nanostrukturierter Hybridmaterialien: Die Simultane Zwillingspolymerisation. Angew Chem Int Ed Eng 51(13):3258–3261.  https://doi.org/10.1002/anie.201108011 CrossRefGoogle Scholar
  56. 56.
    Nie YF, Wang Q, Chen XY, Zhang ZJ (2016) Nitrogen and oxygen functionalized hollow carbon materials: the capacitive enhancement by simply incorporating novel redox additives into H2SO4 electrolyte. J Power Sources 320:140–152CrossRefGoogle Scholar
  57. 57.
    Pimenta MA, Dresselhaus G, Dresselhaus MS, Cançado LG, Jorio A, Saito R (2007) Studying disorder in graphite-based systems by Raman spectroscopy. Phys Chem Chem Phys 9:1276–1291CrossRefGoogle Scholar
  58. 58.
    Jawhari T, Roid A, Casado J (1995) Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33:1561–1565CrossRefGoogle Scholar
  59. 59.
    Wang H, Zhang C, Liu Z, Wang L, Han P, Xu H, Zhang K, Dong S, Yao J, Cui G (2011) Nitrogen-doped graphene nanosheets with excellent lithium storage properties. J Mater Chem 21(14):5430.  https://doi.org/10.1039/c1jm00049g CrossRefGoogle Scholar
  60. 60.
    Pillai SKT, Kretschmer WP, Denner C, Motz G, Hund M, Fery A, Trebbin M, Förster S, Kempe R (2013) SiCN nanofibers with a diameter below 100 nm synthesized via concerted block copolymer formation, microphase separation, and crosslinking. Small 9(7):984–989.  https://doi.org/10.1002/smll.201202121 CrossRefGoogle Scholar
  61. 61.
    He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed 55(41):12582–12594.  https://doi.org/10.1002/anie.201603198 CrossRefGoogle Scholar
  62. 62.
    Blaudeck T, Adner D, Hermann S, Lang H, Gessner T, Schulz SE (2015) Wafer-level decoration of carbon nanotubes in field-effect transistor geometry with preformed gold nanoparticles using a microfluidic approach. Microelectron Eng 137:135–140.  https://doi.org/10.1016/j.mee.2014.09.010 CrossRefGoogle Scholar
  63. 63.
    Song X, Wang S, Chen G, Gao T, Bao Y, Ding L-X, Wang H (2018) Fe-N-doped carbon nanofiber and graphene modified separator for lithium-sulfur batteries. Chem Eng J 333:564–571CrossRefGoogle Scholar
  64. 64.
    Zhang X, Zhao J, He X, Li Q, Ao C, Xia T, Zhang W, Lu C, Deng Y (2018) Mechanically robust and highly compressible electrochemical supercapacitors from nitrogen-doped carbon aerogels. Carbon 127:236–244CrossRefGoogle Scholar
  65. 65.
    TURBOMOLE V6.5 2013, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com
  66. 66.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system turbomole. Chem Phys Lett 162(3):165–169.  https://doi.org/10.1016/0009-2614(89)85118-8 CrossRefGoogle Scholar
  67. 67.
    Treutler O, Ahlrichs R (1995) Efficient molecular numerical integration schemes. J Chem Phys 102(1):346–354.  https://doi.org/10.1063/1.469408 CrossRefGoogle Scholar
  68. 68.
    Eichkorn K, Treutler O, Öhm H, Häser M, Ahlrichs R (1995) Auxiliary basis sets to approximate Coulomb potentials. Chem Phys Lett 242(6):652–660.  https://doi.org/10.1016/0009-2614(95)00838-U CrossRefGoogle Scholar
  69. 69.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theor Chem Accounts 97(1-4):119–124.  https://doi.org/10.1007/s002140050244 CrossRefGoogle Scholar
  70. 70.
    Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132(15):154104.  https://doi.org/10.1063/1.3382344 CrossRefGoogle Scholar
  71. 71.
    Grimme S, Ehrlich S, Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J Comput Chem 32(7):1456–1465.  https://doi.org/10.1002/jcc.21759 CrossRefGoogle Scholar
  72. 72.
    Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc Perkin Trans 2:799–805CrossRefGoogle Scholar
  73. 73.
    Dirac PAM (1929) Quantum mechanics of many-electron systems. Proc R Soc Lond A 123(792):714–733.  https://doi.org/10.1098/rspa.1929.0094 CrossRefGoogle Scholar
  74. 74.
    Slater JC (1951) A simplification f the Hartree-Fock method. Phys Rev 81(3):385–390.  https://doi.org/10.1103/PhysRev.81.385 CrossRefGoogle Scholar
  75. 75.
    Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58(8):1200–1211.  https://doi.org/10.1139/p80-159 CrossRefGoogle Scholar
  76. 76.
    Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. Phys Rev A 38(6):3098–3100.  https://doi.org/10.1103/PhysRevA.38.3098 CrossRefGoogle Scholar
  77. 77.
    Perdew JP (1986) Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys Rev B 33(12):8822–8824.  https://doi.org/10.1103/PhysRevB.33.8822 CrossRefGoogle Scholar
  78. 78.
    Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms li to Kr. J Chem Phys 97(4):2571–2577.  https://doi.org/10.1063/1.463096 CrossRefGoogle Scholar
  79. 79.
    Deglmann P, Furche F, Ahlrichs R (2002) An efficient implementation of second analytical derivatives for density functional methods. Chem Phys Lett 362(5-6):511–518.  https://doi.org/10.1016/S0009-2614(02)01084-9 CrossRefGoogle Scholar
  80. 80.
    Zhao Y, Truhlar DG (2005) Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J Phys Chem A 109(25):5656–5667.  https://doi.org/10.1021/jp050536c CrossRefGoogle Scholar
  81. 81.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998) RI-MP2: optimized auxiliary basis sets and demonstration of efficiency. Chem Phys Lett 294(1-3):143–152.  https://doi.org/10.1016/S0009-2614(98)00862-8 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Christian Schliebe
    • 1
  • Julian Noll
    • 1
  • Sebastian Scharf
    • 1
  • Thomas Gemming
    • 2
  • Andreas Seifert
    • 3
  • Stefan Spange
    • 3
  • Daniel Lehmann
    • 4
  • Dietrich R. T. Zahn
    • 4
  • Benjamin Fiedler
    • 5
  • Joachim Friedrich
    • 5
  • Thomas Blaudeck
    • 6
  • Heinrich Lang
    • 1
    Email author
  1. 1.Faculty of Natural Sciences, Institute of Chemistry, Inorganic ChemistryTechnische Universität ChemnitzChemnitzGermany
  2. 2.IFW DresdenDresdenGermany
  3. 3.Faculty of Natural Sciences, Institute of Chemistry, Polymer ChemistryTechnische Universität ChemnitzChemnitzGermany
  4. 4.Faculty of Natural Sciences, Institute of Physics, Semiconductor PhysicsTechnische Universität ChemnitzChemnitzGermany
  5. 5.Faculty of Natural Sciences, Institute of Chemistry, Theoretical ChemistryTechnische Universität ChemnitzChemnitzGermany
  6. 6.Faculty of Electrical Engineering and Information Technology, Center for Microtechnologies (ZfM)Technische Universität ChemnitzChemnitzGermany

Personalised recommendations