Advertisement

Colloid and Polymer Science

, Volume 296, Issue 2, pp 367–378 | Cite as

Effect of chain length on the interactions of sodium N-alkyl prolinates with bovine serum albumin: a spectroscopic investigation and molecular docking simulations

  • Nausheen Joondan
  • Salma Bibi Moosun
  • Prakashanand Caumul
  • Suthananda N. Sunassee
  • Gerhard A. Venter
  • Sabina Jhaumeer-LaullooEmail author
Original Contribution
  • 148 Downloads

Abstract

The interaction of anionic surfactants with serum albumin has emerged as an important area of research and is considered as a model for gaining fundamental insight into surfactant-protein binding, which is useful in both chemical and biological applications. This study involves the interactions of three synthesized proline-based anionic surfactants of varying chain lengths (C8, C10, and C12) with bovine serum albumin (BSA) using different techniques, including fluorescence, 1H NMR, and FT-IR spectroscopy. The study indicated that the binding of the proline surfactants with BSA followed a static quenching process, with an increase in binding ability upon increasing chain length. FT-IR studies revealed a change in the secondary structure of BSA upon binding with the proline surfactant, while 1H NMR investigations indicated the proximity of the long alkyl chain of the surfactant with tryptophan residues of BSA. Molecular docking studies performed on the three proline surfactants with BSA revealed that the surfactants were able to bind in the vicinity of both tryptophan residues (Trp-213 and Trp-134) with an increase in the free energy of binding while increasing the chain length from C8 to C12. Therefore, this study provided a whole view about the interaction of BSA with anionic proline derived surfactants, which can be used as potential ingredients in pharmaceutical products.

Keywords

Anionic surfactants Proline Bovine serum albumin Fluorescence quenching Molecular docking 

Notes

Acknowledgements

Computations were performed using facilities provided by the University of Cape Town’s ICTS High-Performance Computing Team: http://hpc.uct.ac.za. One of the authors is thankful to the tertiary education commission for the grant of scholarship scheme.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests.

Supplementary material

396_2017_4251_MOESM1_ESM.docx (453 kb)
ESM 1 (DOCX 453 kb)

References

  1. 1.
    Kirk O, Borchert TV, Fuglsang CC (2002) Industrial enzyme applications. Curr Opin Biotechnol 13(4):345–351.  https://doi.org/10.1016/S0958-1669(02)00328-2CrossRefGoogle Scholar
  2. 2.
    Suryawanshi VD, Walekar LS, Gore AH, Anbhule PV, Kolekar GB (2016) Spectroscopic analysis on the binding interaction of biologically active pyrimidine derivative with bovine serum albumin. J Pharm Anal 6(1):56–63.  https://doi.org/10.1016/j.jpha.2015.07.001CrossRefGoogle Scholar
  3. 3.
    Moriyama Y, Ohta D, Hachiya K, Mitsui Y, Takeda K (1996) Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins. J Protein Chem 15(3):265–272.  https://doi.org/10.1007/BF01887115CrossRefGoogle Scholar
  4. 4.
    Feng XZ, Liu Z, Yang LJ, Wang C, Bai CL (1998) Investigation of the interaction between acridine orange and bovine serum albumin. Talanta 47(5):1223–1229.  https://doi.org/10.1016/S0039-9140(98)00198-2CrossRefGoogle Scholar
  5. 5.
    Qi ZD, Zhou B, Xiao Q, Shi C, Liu Y, Dai J (2008) Interaction of rofecoxib with human serum albumin: determination of binding constants and the binding site by spectroscopic methods. J Photochem Photobiol A Chem 193(2-3):81–88.  https://doi.org/10.1016/j.jphotochem.2007.06.011CrossRefGoogle Scholar
  6. 6.
    Sulkowska A, Bojko B, Rownicka J, Sulkowski W (2003) Effect of urea on serum albumin complex with antithyroid drugs: a fluorescence study. J Mol Struct 651:237–243CrossRefGoogle Scholar
  7. 7.
    Shah A, Bano B (2011) Spectroscopic studies on the interaction of bilirubin with liver cystatin. Eur Biophys J 40(2):175–180.  https://doi.org/10.1007/s00249-010-0637-4CrossRefGoogle Scholar
  8. 8.
    Smalley JW, Charalabou P, Hart CA, Silver J (2003) Transmissible Burkholderia cepacia genomovar IIIA strains bind and convert monomeric iron(III) protoporphyrin IX into the M-oxo oligomeric form. Microbiology 149(4):843–853.  https://doi.org/10.1099/mic.0.26160-0CrossRefGoogle Scholar
  9. 9.
    Jones MN (1992) Surfactant interactions with biomembranes and proteins. Chem Soc Rev 21(2):127–136.  https://doi.org/10.1039/cs9922100127CrossRefGoogle Scholar
  10. 10.
    Mishra M, Muthuprasanna P, Prabha KS, Rani PS, Babu IAS, Chandiran IS, Arunachalam G, Shalini S (2009) Basics and potential applications of surfactants: a review. Int J Pharm Tech Res 1:1354–1365Google Scholar
  11. 11.
    Martin VI, Rodriguez A, Maestre A, Moya ML (2013) Binding of cationic single-chain and dimeric surfactants to bovine serum albumin. Langmuir 29(25):7629–7641.  https://doi.org/10.1021/la400789kCrossRefGoogle Scholar
  12. 12.
    Otzen D (2011) Protein-surfactant interactions: a tale of many states. Biochim Biophys Acta 1814(5):562–591.  https://doi.org/10.1016/j.bbapap.2011.03.003CrossRefGoogle Scholar
  13. 13.
    Huang BX, Kim HY, Dass C (2004) Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J Am Soc Mass Spectrom 15(8):1237–1247.  https://doi.org/10.1016/j.jasms.2004.05.004CrossRefGoogle Scholar
  14. 14.
    Minic S, Stanic-Vucinic D, Radomirovic M, Radibratovic M, Milcic M, Nikolic M, Velickovic TC (2018) Characterisation and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chem 239:1090–1099.  https://doi.org/10.1016/j.foodchem.2017.07.066CrossRefGoogle Scholar
  15. 15.
    De Sous ND, Salmon CEG, Alonso A, Tabak M (2009) Interaction of bovine serum albumin (BSA) with ionic surfactants evaluated by electron paramagnetic resonance (EPR) spectroscopy. Colloids Surf B 70:147–156CrossRefGoogle Scholar
  16. 16.
    Dasmandal S, Kundu A, Rudra S, Mahapatra A (2015) Binding interaction of an anionic amino acid surfactant with bovine serum albumin: physicochemical and spectroscopic investigations combined with molecular docking. RSC Adv 5(96):79107–79118.  https://doi.org/10.1039/C5RA17254CCrossRefGoogle Scholar
  17. 17.
    Ghosh S, Dey J (2015) Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: effect of head-group hydrophobicity. J Colloid Interface Sci 458:284–292.  https://doi.org/10.1016/j.jcis.2015.07.064CrossRefGoogle Scholar
  18. 18.
    Ohta A, Toda K, Morimoto Y, Asakawa T, Miyagishi S (2008) Effect of the side chain of N-acyl amino acid surfactants on micelle formation: an isothermal titration calorimetry study. Colloids Surf A Physicochem Eng Asp 317(1-3):316–322.  https://doi.org/10.1016/j.colsurfa.2007.10.028CrossRefGoogle Scholar
  19. 19.
    Jadhav V, Maiti S, Dasgupta A, Das PK, Dias RS, Miguel MG, Lindman B (2008) Effect of head group geometry of amino acid based cationic surfactants on interaction with plasmid DNA. Biomacromolecules 9(7):1852–1859.  https://doi.org/10.1021/bm8000765CrossRefGoogle Scholar
  20. 20.
    Silva GS, Rodriguez-Borges JE, Marques EF, Do Vale CML (2009) Towards novel efficient monomeric surfactants based on serine, tyrosine and 4-hydroxyproline: synthesis and micellization properties. Tetrahedron 65(21):4156–4164.  https://doi.org/10.1016/j.tet.2009.03.043CrossRefGoogle Scholar
  21. 21.
    Becke AD (1993) Densityfunctional thermochemisty. III. The role of exact exhange. J Chem Phys 98(7):5648–5652.  https://doi.org/10.1063/1.464913CrossRefGoogle Scholar
  22. 22.
    Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789.  https://doi.org/10.1103/PhysRevB.37.785CrossRefGoogle Scholar
  23. 23.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force field. J Phys Chem 98(45):11623–11627.  https://doi.org/10.1021/j100096a001CrossRefGoogle Scholar
  24. 24.
    Weigend F, Ahlrichs R (2005) Balaned basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn : design and assessment of accuracy. Phys Chem Chem Phys 7(18):3297–3305.  https://doi.org/10.1039/b508541aCrossRefGoogle Scholar
  25. 25.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CTGoogle Scholar
  26. 26.
    Word JM, Lovell SC, Richardson JS, Richardson DC (1999) Asparagine and glutamine: using hydrogen atom contacts in the choice of side-chain amide orientation. J Mol Biol 285(4):1735–1747.  https://doi.org/10.1006/jmbi.1998.2401CrossRefGoogle Scholar
  27. 27.
    Gasteiger J, Marsili M (1978) A new model for calculating atomic charges in molecules. Tetrahedron Lett 19(34):3181–3184.  https://doi.org/10.1016/S0040-4039(01)94977-9CrossRefGoogle Scholar
  28. 28.
    O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) OpenBabel: an open chemical toolbox. J ChemInform 3:1–14CrossRefGoogle Scholar
  29. 29.
    Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock 4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791.  https://doi.org/10.1002/jcc.21256CrossRefGoogle Scholar
  30. 30.
    Laskowski RA, Swindells MB (2011) Ligplot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786Google Scholar
  31. 31.
    Baker NA, Sept D, Joseph S, Holst MJ and McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci USA 98(18):10037–10041Google Scholar
  32. 32.
    Dolinsky TJ, Nielsen JE, McCammon JA, Baker NA (2004) PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res 32(Web Server):W665–W667.  https://doi.org/10.1093/nar/gkh381CrossRefGoogle Scholar
  33. 33.
    Sitkoff D, Sharp KA, Honig B (1994) Accurate calculation of hydration free energies using macroscopic solvent models. J Phys Chem 98(7):1978–1988.  https://doi.org/10.1021/j100058a043CrossRefGoogle Scholar
  34. 34.
    Zhang Z, Zheng P, Guo Y, Yang Y, Chen Z, Wang X, An X, Shen W (2012) The effect of the spacer rigidity on the aggregation behavior of two ester-containing gemini surfactants. J Colloid Interface Sci 379(1):64–71.  https://doi.org/10.1016/j.jcis.2012.04.052CrossRefGoogle Scholar
  35. 35.
    Yin T, Qina M, Shen W (2014) Physicochemical investigations on the interactions between gemini/single-chain cationic surfactants and bovine serum albumin. Colloids Surf A Physicochem Eng Asp 461:22–29.  https://doi.org/10.1016/j.colsurfa.2014.07.012CrossRefGoogle Scholar
  36. 36.
    Wang Y, Jiang X, Zhou L, Yang L, Xia G, Chen Z, Duan M (2013) Synthesis and binding with BSA of a new gemini surfactant. Colloids Surf A Physicochem Eng Asp 436:1159–1169.  https://doi.org/10.1016/j.colsurfa.2013.08.045CrossRefGoogle Scholar
  37. 37.
    Mir MA, Khan JM, Khan RH, Rather GM, Dar AA (2010) Effect of spacer length of alkanediyl—bis(dimethylcetylammonium bromide) gemini homologues on the interfacial and physicochemical properties of BSA. Colloids Surf B 77:54–59CrossRefGoogle Scholar
  38. 38.
    Valstar A, Almgren M, Brown W, Vasilescu M (2000) The interaction of bovine serum albumin with surfactants studied by light scattering. Langmuir 16(3):922–927.  https://doi.org/10.1021/la990423iCrossRefGoogle Scholar
  39. 39.
    Gelamo EL, Silva CHTP, Imasato H, Tabak M (2002) Interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants: spectroscopy and modelling. Biochim Biophys Acta 1594(1):84–99.  https://doi.org/10.1016/S0167-4838(01)00287-4CrossRefGoogle Scholar
  40. 40.
    Hu M, Wang X, Wang H, Chai Y, He Y, Song G (2012) Fluorescence spectroscopic studies on the interaction of gemini surfactant 14-6-14 with bovine serum albumin. J Lumin 27(3):204–210.  https://doi.org/10.1002/bio.1333CrossRefGoogle Scholar
  41. 41.
    Chakraborty T, Chakraborty I, Moulik SP, Ghosh S (2009) Physicochemical and conformational studies on BSA–surfactant interaction in aqueous medium. Langmuir 25(5):3062–3074.  https://doi.org/10.1021/la803797xCrossRefGoogle Scholar
  42. 42.
    Teng Y, Liu R, Yan S, Pan X, Zhang P, Wang M (2010) Spectroscopic investigation on the toxicological interactions of 4-aminoantipyrine with bovine hemoglobin. J Fluoresc 20(1):381–387.  https://doi.org/10.1007/s10895-009-0543-2CrossRefGoogle Scholar
  43. 43.
    Li D, Zhu M, Xu C, Ji B (2011) Characterization of the baicalein–bovine serum albumin complex without or with Cu2+ or Fe3+ by spectroscopic approaches. Eur J Med Chem 46(2):588–599.  https://doi.org/10.1016/j.ejmech.2010.11.038CrossRefGoogle Scholar
  44. 44.
    Syme NR, Dennis C, Bronowska A, Paesen GC, Homans SW (2010) Comparison of entropic contributions to binding in a “hydrophilic” versus “hydrophobic” ligand−protein interaction. J Am Chem Soc 132(25):8682–8689.  https://doi.org/10.1021/ja101362uCrossRefGoogle Scholar
  45. 45.
    Vishvakarma VK, Patel K, Kumari K, Singh P (2017) Interaction between bovine serum albumin and gemini surfactants molecular docking characterisation. Inf Sci Lett 6:33–38Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Nausheen Joondan
    • 1
  • Salma Bibi Moosun
    • 1
  • Prakashanand Caumul
    • 1
  • Suthananda N. Sunassee
    • 2
    • 3
  • Gerhard A. Venter
    • 2
    • 4
  • Sabina Jhaumeer-Laulloo
    • 1
    Email author
  1. 1.Department of Chemistry, Faculty of ScienceUniversity of MauritiusReduitMauritius
  2. 2.Department of ChemistryUniversity of Cape TownRondeboschSouth Africa
  3. 3.South African Medical Research Council Drug Discovery and Development Research UnitUniversity of Cape TownRondeboschSouth Africa
  4. 4.Scientific Computing Research UnitUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations