Advertisement

Colloid and Polymer Science

, Volume 295, Issue 9, pp 1463–1473 | Cite as

Design of nucleic acid-layered double hydroxide nanohybrids

  • Mónika Ádok-Sipiczki
  • Istvan Szilagyi
  • István Pálinkó
  • Marko Pavlovic
  • Pál Sipos
  • Corinne Nardin
Original Contribution

Abstract

We report here on the design of inorganic–organic hybrid materials, which consist of layered double hydroxides (LDHs) as inorganic carrier and short single-stranded nucleic acids (ssDNA) as organic molecules. LDHs were prepared by the co-precipitation method followed by hydrothermal treatment. A model 12-nucleotide-long sequence was immobilized either by ion exchange or covalent grafting. Both the LDH composition and the nucleic acid-to-particle ratio were optimized throughout the synthesis to develop highly stable suspensions of the hybrid materials. Structural characterization revealed that the covalent attachment of the ssDNA was successfully achieved via silanization of the LDHs in aqueous suspension. Covalent linkage of the nucleic acids confers to this model nanoparticulate system promising properties and potential for applications as therapeutic agents. Fragments of nucleic acids could be introduced into living cells without release during the delivery process since LDHs slowly dissolve in the slightly acidic intracellular space.

Graphical abstract

A nucleic acid-layered double hydroxide biohybrid system was developed via covalent linkage between the organic molecule and the nanoparticulate support.

Keywords

Layered double hydroxide Nucleic acid Biohybrid Colloids Nanoparticles Inorganic oxides Colloidal stability 

Notes

Acknowledgements

This research was sponsored by the Swiss National Science Foundation (150162), Swiss Secretariat for Education, Research and Innovation (C15.0024), COST Action CM1303 and the University of Geneva. Financial support for M. Á.-S. was also provided by the Swiss Scientific Exchange Program (14033). The authors are also grateful to Professor Michal Borkovec for providing access to the instruments for electrophoretic and DLS measurements.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Sokolova V, Epple M (2008) Angew Chem-Int Edit 47:1382–1395CrossRefGoogle Scholar
  2. 2.
    Choy JH (2004) J Phys Chem Solids 65:373–383CrossRefGoogle Scholar
  3. 3.
    Perioli L, Pagano C (2012) Expert Opin Drug Deliv 9:1559–1572CrossRefGoogle Scholar
  4. 4.
    Rives V, del Arco M, Martin C (2014) Appl Clay Sci 88-89:239–269CrossRefGoogle Scholar
  5. 5.
    Gu Z, Atherton JJ, Xu ZP (2015) Chem Commun 51:3024–3036CrossRefGoogle Scholar
  6. 6.
    Ladewig K, Xu ZP, Lu GQ (2009) Expert Opin Drug Deliv 6:907–922CrossRefGoogle Scholar
  7. 7.
    Evans DG and Slade RCT (2006) In: Duan X and Evans DG (eds) Layered double hydroxides, vol 119, p 1–87Google Scholar
  8. 8.
    Chakraborti M, Jackson JK, Plackett D, Gilchrist SE, Burt HM (2012) J Mater Sci-Mater Med 23:1705–1713CrossRefGoogle Scholar
  9. 9.
    Choy JH, Park M, Oh JM (2006) Curr Nanosci 2:275–281CrossRefGoogle Scholar
  10. 10.
    Kwak SY, Jeong YJ, Park JS, Choy JH (2002) Solid State Ionics 151:229–234CrossRefGoogle Scholar
  11. 11.
    Kollar T, Palinko I, Kiricsi I (2005) J Therm Anal Calorim 79:533–535CrossRefGoogle Scholar
  12. 12.
    Fudala A, Palinko I, Kiricsi I (1999) Inorg Chem 38:4653–4658CrossRefGoogle Scholar
  13. 13.
    Yan SY, Rolfe BE, Zhang B, Mohammed YH, Gu WY, Xu ZP (2014) Biomaterials 35:9508–9516CrossRefGoogle Scholar
  14. 14.
    Li SD, Li JH, Wang CJ, Wang Q, Cader MZ, Lu J, Evans DG, Duan X, O’Hare D (2013) J Mater Chem B 1:61–68CrossRefGoogle Scholar
  15. 15.
    Li B, Wu PX, Ruan B, Liu PY, Zhu NW (2014) Spectroc Acta Pt A-Molec Biomolec Spectr 121:387–393CrossRefGoogle Scholar
  16. 16.
    Lu MS, Shan Z, Andrea K, MacDonald B, Beale S, Curry DE, Wang L, Wang SJ, Oakes KD, Bennett C, Wu WH, Zhang X (2016) Langmuir 32:2659–2667CrossRefGoogle Scholar
  17. 17.
    Choy JH, Kwak SY, Park JS, Jeong YJ, Portier J (1999) J am Chem Soc 121:1399–1400CrossRefGoogle Scholar
  18. 18.
    Choy JH, Kwak SY, Jeong YJ, Park JS (2000) Angew Chem-Int Edit 39:4042–4045Google Scholar
  19. 19.
    Wong YY, Cooper HM, Zhang K, Chen M, Bartlett P, Xu ZP (2012) J Colloid Interface Sci 369:453–459CrossRefGoogle Scholar
  20. 20.
    Chen M, Cooper HM, Zhou JZ, Bartlett PF, Xu ZP (2013) J Colloid Interface Sci 390:275–281CrossRefGoogle Scholar
  21. 21.
    Park DH, Cho J, Kwon OJ, Yun CO, Choy JH (2016) Angew Chem-Int Edit 55:4582–4586CrossRefGoogle Scholar
  22. 22.
    Zuo H, Gu Z, Cooper H, Xu ZP (2015) J Colloid Interface Sci 459:10–16CrossRefGoogle Scholar
  23. 23.
    Gu Z, Zuo HL, Li L, Wu AH, Xu ZP (2015) J Mater Chem B 3:3331–3339CrossRefGoogle Scholar
  24. 24.
    Pavlovic M, Li L, Dits F, Gu Z, Adok-Sipiczki M, Szilagyi I (2016) RSC Adv 6:16159–16167CrossRefGoogle Scholar
  25. 25.
    Vasti C, Bedoya DA, Rojas R, Giacomelli CE (2016) J Mater Chem B 4:2008–2016CrossRefGoogle Scholar
  26. 26.
    Tao Q, Zhu JX, Frost RL, Bostrom TE, Wellard RM, Wei JM, Yuan P, He HP (2010) Langmuir 26:2769–2773CrossRefGoogle Scholar
  27. 27.
    Tao Q, He HP, Frost RL, Yuan P, Zhu JX (2009) Appl Surf Sci 255:4334–4340CrossRefGoogle Scholar
  28. 28.
    Xu ZP, Stevenson G, Lu CQ, Lu GQ (2006) J Phys Chem B 110:16923–16929CrossRefGoogle Scholar
  29. 29.
    Sun XD, Dey SK (2015) J Colloid Interface Sci 458:160–168CrossRefGoogle Scholar
  30. 30.
    He J, Wei M, Li B, Kang Y, Evans DG and Duan X (2006) In: Duan X and Evans DG (eds) Layered double hydroxides, vol 119, p 89–119Google Scholar
  31. 31.
    Safir I, Ngo KX, Abraham JN, Afshar MG, Pavlova E, Nardin C (2015) Polymer 79:29–36CrossRefGoogle Scholar
  32. 32.
    Montalbetti C, Falque V (2005) Tetrahedron 61:10827–10852CrossRefGoogle Scholar
  33. 33.
    Hassan PA, Rana S, Verma G (2015) Langmuir 31:3–12CrossRefGoogle Scholar
  34. 34.
    Berne BJ, Pecora R (1990) Dynamic light scattering. Robert E. Krieger Publishing, MalabarGoogle Scholar
  35. 35.
    Rives V (2001) Layered double hydroxides: present and future. Nova Science Publishers, Inc., New YorkGoogle Scholar
  36. 36.
    Bookin AS, Drits VA (1993) Clay Clay Min 41:551–557CrossRefGoogle Scholar
  37. 37.
    Ahmed AAA, Talib ZA, bin Hussein MZ, Zakaria A (2012) J Solid State Chem 191:271–278CrossRefGoogle Scholar
  38. 38.
    Rojas Delgado R, De Pauli CP, Carrasco CB, Avena MJ (2008) Appl Clay Sci 40:27–37CrossRefGoogle Scholar
  39. 39.
    Evans DF, Wennerstrom H (1999) The colloidal domain. John Wiley, New YorkGoogle Scholar
  40. 40.
    Pavlovic M, Huber R, Adok-Sipiczki M, Nardin C, Szilagyi I (2016) Soft Matter 12:4024–4033CrossRefGoogle Scholar
  41. 41.
    Abe T, Kobayashi S, Kobayashi M (2011) Colloid Surf A 379:21–26CrossRefGoogle Scholar
  42. 42.
    Benigar E, Dogsa I, Stopar D, Jamnik A, Cigic IK, Tomsic M (2014) Langmuir 30:4172–4182CrossRefGoogle Scholar
  43. 43.
    Derjaguin B (1940) Trans Faraday Soc 35:0203–0214CrossRefGoogle Scholar
  44. 44.
    Verwey EJW, Overbeek JTG (1948) Theory of stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  45. 45.
    Israelachvili J (2011) Intermolecular and surface forces, 3rd edn. Academic Press, LondonGoogle Scholar
  46. 46.
    Lagaly G, Mecking O, Penner D (2001) Colloid Polym Sci 279:1090–1096CrossRefGoogle Scholar
  47. 47.
    Schneider C, Hanisch M, Wedel B, Jusufi A, Ballauff M (2011) J Colloid Interface Sci 358:62–67CrossRefGoogle Scholar
  48. 48.
    Gursky JA, Blough SD, Luna C, Gomez C, Luevano AN, Gardner EA (2006) J am Chem Soc 128:8376–8377CrossRefGoogle Scholar
  49. 49.
    Pavlovic M, Adok-Sipiczki M, Nardin C, Pearson S, Bourgeat-Lami E, Prevot V, Szilagyi I (2015) Langmuir 31:12609–12617CrossRefGoogle Scholar
  50. 50.
    Borkovec M, Papastavrou G (2008) Curr Opin Colloid Interface Sci 13:429–437CrossRefGoogle Scholar
  51. 51.
    Kloprogge JT, Hickey L, Frost RL (2004) J Raman Spectrosc 35:967–974CrossRefGoogle Scholar
  52. 52.
    Kloprogge JT, Wharton D, Hickey L, Frost RL (2002) Am Miner 87:623–629CrossRefGoogle Scholar
  53. 53.
    Mora M, Lopez MI, Jimenez-Sanchidrian C, Ruiz JR (2013) J Porous Mat 20:351–357CrossRefGoogle Scholar
  54. 54.
    Xu ZP, Jin YG, Liu SM, Hao ZP, Lu GQ (2008) J Colloid Interface Sci 326:522–529CrossRefGoogle Scholar
  55. 55.
    Banyay M, Sarkar M, Graslund A (2003) Biophys Chem 104:477–488CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Mónika Ádok-Sipiczki
    • 1
    • 2
  • Istvan Szilagyi
    • 1
  • István Pálinkó
    • 2
  • Marko Pavlovic
    • 1
  • Pál Sipos
    • 3
  • Corinne Nardin
    • 1
    • 4
  1. 1.Department of Inorganic and Analytical ChemistryUniversity of GenevaGenevaSwitzerland
  2. 2.Department of Organic ChemistryUniversity of SzegedSzegedHungary
  3. 3.Department of Inorganic and Analytical ChemistryUniversity of SzegedSzegedHungary
  4. 4.Institut des Sciences Analytiques et de Physicochimie pour l’Environnement et les MatériauxUniversité de Pau et des Pays de l’AdourPauFrance

Personalised recommendations