Advertisement

Colloid and Polymer Science

, Volume 295, Issue 9, pp 1485–1490 | Cite as

Evolution of shape isotropy in silica microparticles induced by the base

  • J. Brijitta
  • D. Ramachandran
  • A. M. Rabel
  • N. Nixon Raj
  • K. Viswanathan
  • S. Sanjeevi Prasath
Original Contribution
  • 264 Downloads

Abstract

Evolution of shape isotropy in silica microparticles synthesized by sol-gel method is examined by varying the concentration of ammonia. The morphology evolved from worm-like structure to monodisperse spheres. The shape evolution is attributed to the “Pearl-necklace” mechanism wherein the worm-like silica particles due to constrain in its mobility, collapse to an energetically favored spherical morphology with intermediate doll/frustum cone-like morphologies. Plausible reason for the collapse in morphology could be the conformational entropy of the worm-like particles to explore various re-arranged morphologies arising due to Rayleigh-Plateau instability. The collapse in morphology is analogous to the coil to globule transition in polymeric systems; however, the length scales explored in the present study are of the order of micrometers, and the collapse depends on the base concentration. The present system will serve as a model for understanding the various re-arrangements undergoing during the compaction of biological moieties.

Keywords

Colloids Interfaces Morphology Microparticles Mixtures 

Notes

Acknowledgements

Authors are grateful to Dr. Jeppiaar, Dr. T. Sasipraba, and the Management, Sathyabama University for their support and encouragement.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

No specific funds/grants were received from any funding bodies to carry out the work described in this article.

References

  1. 1.
    Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26(1):62–69CrossRefGoogle Scholar
  2. 2.
    Van Blaaderen A, Vrij A (1993) Synthesis and characterization of monodisperse colloidal organo-silica spheres. J Colloid Interface Sci 156(1):1–18CrossRefGoogle Scholar
  3. 3.
    Reese CE, Guerrero CD, Weissman JM, Lee K, Asher SA (2000) Synthesis of highly charged, monodisperse polystyrene colloidal particles for the fabrication of photonic crystals. J Colloid Interface Sci 232(1):76–80CrossRefGoogle Scholar
  4. 4.
    Zhang C, Pansare VJ, Prud'Homme RK, Priestley RD (2012) Flash nanoprecipitation of polystyrene nanoparticles. Soft Matter 8(1):86–93CrossRefGoogle Scholar
  5. 5.
    Brijitta J, Tata BVR, Joshi RG, Kaliyappan T (2009) Random hcp and fcc structures in thermoresponsive microgel crystals. J Chem Phys 131(7):074904CrossRefGoogle Scholar
  6. 6.
    Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104(27):6327–6331CrossRefGoogle Scholar
  7. 7.
    Liu G, Li L, Yang X (2008) Preparation of ellipsoidal hematite/polymer hybrid materials and the corresponding hollow polymer ellipsoids. Polymer 49(22):4776–4783CrossRefGoogle Scholar
  8. 8.
    Zhang H, Bandosz TJ, Akins DL (2011) Template-free synthesis of silica ellipsoids. Chem Commun 47(27):7791–7793CrossRefGoogle Scholar
  9. 9.
    Xu C, Wang Q, Xu H, Xie S, Yang Z (2007) General synthesis of hollow composite ellipsoids. Colloid Polym Sci 285(13):1471–1478CrossRefGoogle Scholar
  10. 10.
    Shen S, Tao G, Mao D, Xiao X, Yuan P, Yu M, Xia L, et al (2011) Synthesis of nonspherical mesoporous silica ellipsoids with tunable aspect ratios for magnetic assisted assembly and gene delivery. Chem Mater 24(1):230–235CrossRefGoogle Scholar
  11. 11.
    Johnson PM, van Kats CM, van Blaaderen A (2005) Synthesis of colloidal silica dumbbells. Langmuir 21(24):11510–11517CrossRefGoogle Scholar
  12. 12.
    Kim J-W, Larsen RJ, Weitz DA (2006) Synthesis of nonspherical colloidal particles with anisotropic properties. J am Chem Soc 128(44):14374–14377CrossRefGoogle Scholar
  13. 13.
    Peng B, Vutukuri HR, van Blaaderen A, Imhof A (2012) Synthesis of fluorescent monodisperse non-spherical dumbbell-like model colloids. J Mater Chem 22(41):21893–21900CrossRefGoogle Scholar
  14. 14.
    Kim S-H, Hollingsworth AD, Sacanna S, Chang S-J, Lee G, Pine DJ, Yi G-R (2012) Synthesis and assembly of colloidal particles with sticky dimples. J am Chem Soc 134(39):16115–16118CrossRefGoogle Scholar
  15. 15.
    Meester V, Kraft DJ (2016) Spherical, dimpled, and crumpled hybrid colloids with tunable surface morphology. Langmuir 32(41):10668–10677CrossRefGoogle Scholar
  16. 16.
    Wang Y, Wang Y, Zheng X, Yi G-R, Sacanna S, Pine DJ, Weck M (2014) Three-dimensional lock and key colloids. J am Chem Soc 136(19):6866–6869CrossRefGoogle Scholar
  17. 17.
    Kang S-M, Choi C-H, Kim J, Yeom S-J, Lee D, Park BJ, Lee C-S (2016) Capillarity-induced directed self-assembly of patchy hexagram particles at the air–water interface. Soft Matter 12(27):5847–5853CrossRefGoogle Scholar
  18. 18.
    Rasheed N, Khorasani AA, Cebral J, Mut F, Löhner R, Salvador-Morales C (2015) Mechanisms involved in the formation of biocompatible lipid polymeric hollow patchy particles. Langmuir 31(24):6639–6648CrossRefGoogle Scholar
  19. 19.
    Hagemans F, van der Wee EB, van Blaaderen A, Imhof A (2016) Synthesis of cone-shaped colloids from rod-like silica colloids with a gradient in the etching rate. Langmuir 32(16):3970–3976CrossRefGoogle Scholar
  20. 20.
    Sharifzadeh E, Salami-Kalajahi M, Hosseini MS, Aghjeh MKR (2017) Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid Polym Sci 295(1):25–36CrossRefGoogle Scholar
  21. 21.
    Shibata N, Nagao D, Ishii H, Konno M (2013) Preparation of various Janus composite particles with two components differently combined. Colloid Polym Sci 291(1):137–142CrossRefGoogle Scholar
  22. 22.
    Jiang S, Granick S (2008) Controlling the geometry (Janus balance) of amphiphilic colloidal particles. Langmuir 24(6):2438–2445CrossRefGoogle Scholar
  23. 23.
    Lee SH, Gerbode SJ, John BS, Wolfgang AK, Escobedo FA, Cohen I, Liddell CM (2008) Synthesis and assembly of nonspherical hollow silica colloids under confinement. J Mater Chem 18(41):4912–4916CrossRefGoogle Scholar
  24. 24.
    Nakamura H, Matsui Y (1995) The preparation of novel silica gel hollow tubes. Adv Mater 7(10):871–872CrossRefGoogle Scholar
  25. 25.
    Kuijk A, van Blaaderen A, Imhof A (2011) Synthesis of monodisperse, rodlike silica colloids with tunable aspect ratio. J am Chem Soc 133(8):2346–2349CrossRefGoogle Scholar
  26. 26.
    Kuijk A (2012) Fluorescent colloidal silica rods synthesis and phase behavior. PhD thesis, Utrecht University, The Netherlands. ISBN 978–90–393-5720-0Google Scholar
  27. 27.
    Kim J-W, Larsen RJ, Weitz DA (2007) Uniform nonspherical colloidal particles with tunable shapes. Adv Mater 19(15):2005–2009CrossRefGoogle Scholar
  28. 28.
    Morgan AR, Dawson AB, Mckenzie HS, Skelhon TS, Beanland R, Franks HPW, Bon SAF (2014) Chemotaxis of catalytic silica–manganese oxide “matchstick” particles. Materials Horizons 1(1):65–68CrossRefGoogle Scholar
  29. 29.
    Zhang J, Liu H, Wang Z, Ming N (2008) Au-induced polyvinylpyrrolidone aggregates with bound water for the highly shape-selective synthesis of silica nanostructures. Chemistry-a European Journal 14(14):4374–4380CrossRefGoogle Scholar
  30. 30.
    Longbottom BW, Rochford LA, Beanland R, Bon SAF (2015) Mechanistic insight into the synthesis of silica-based “matchstick” colloids. Langmuir 31(33):9017–9025CrossRefGoogle Scholar
  31. 31.
    De Gennes PG (1985) Kinetics of collapse for a flexible coil. Journal de Physique Lettres 46(14):639–642CrossRefGoogle Scholar
  32. 32.
    Karim S, Toimil-Molares ME, Balogh AG, Ensinger W, Cornelius TW, Khan EU, Neumann R (2006) Morphological evolution of au nanowires controlled by Rayleigh instability. Nanotechnology 17(24):5954CrossRefGoogle Scholar
  33. 33.
    Abrams CF, Lee N-K, Obukhov SP (2002) Collapse dynamics of a polymer chain: theory and simulation. EPL (Europhysics Letters) 59(3):391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • J. Brijitta
    • 1
  • D. Ramachandran
    • 1
  • A. M. Rabel
    • 1
  • N. Nixon Raj
    • 1
  • K. Viswanathan
    • 1
  • S. Sanjeevi Prasath
    • 1
  1. 1.Centre for Nanoscience and NanotechnologySathyabama UniversityChennaiIndia

Personalised recommendations