Advertisement

Colloid and Polymer Science

, Volume 295, Issue 8, pp 1351–1358 | Cite as

Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer

  • Michael T. Cook
  • Sergey K. Filippov
  • Vitaliy V. Khutoryanskiy
Invited Article

Abstract

In this paper, we report the synthesis and self-assembly of a novel thermoresponsive PNIPAM60b-PDMS70b-PNIPAM60 triblock copolymer in aqueous solution. The copolymer used a commercially available precursor modified with an atom transfer radical polymerization (ATRP) initiator to produce an ABA triblock copolymer via ATRP. Small-angle neutron scattering (SANS) was used to shed light on the structures of nanoparticles formed in aqueous solutions of this copolymer at two temperatures, 25 and 40 °C. The poly(dimethylsiloxane) block is very hydrophobic and poly(N-isopropylacrylamide) (PNIPAM) is thermoresponsive. SANS data at 25 °C indicates that the solutions of PNIPAM–b-PDMS–b-PNIPAM copolymers form well-defined aggregates with presumably core–shell structures below cloud point temperature. The scattering curves originating from nanoparticles formed at 40 °C in 100% D2O or 100% H2O were successfully fitted with the Beaucage model describing aggregates with hierarchical structure.

Keywords

Thermoresponsive PNIPAM SANS Polymerization Atom transfer radical polymerization (ATRP) Self-assembly 

Notes

Acknowledgements

S.F. acknowledges the Czech Science Foundation Grant No. 15-10527J. Institute Laue–Langevin is acknowledged for beam time allocation. This work was also supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (Project POLYMAT LO1507). We acknowledge Isabelle Grillo, ILL, France, for help with the data treatment. The work was supported within the program of Large Infrastructures for Research, Experimental Development and Innovation (Project No. LM2015050) and research project LG14037 financed by the Ministry of Education, Youth and Sports, Czech Republic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2017_4084_MOESM1_ESM.docx (34 kb)
ESM 1 (DOCX 34 kb).

References

  1. 1.
    Zhunuspayev DE, Mun GA, Khutoryanskiy VV (2010) Temperature-responsive properties and drug solubilization capacity of amphiphilic copolymers based on N-vinylpyrrolidone and vinyl propyl ether. Langmuir 26:7590–7597CrossRefGoogle Scholar
  2. 2.
    Khutoryanskaya OV, Mayeva ZA, Mun GA, Khutoryanskiy VV (2008) Designing temperature-responsive biocompatible copolymers and hydrogels based on 2-hydroxyethyl(meth)acrylates. Biomacromolecules 9:3353–3361CrossRefGoogle Scholar
  3. 3.
    Hruby M, Filippov SK, Panek J, Novakova M, Mackova H, Kucka J, Vetvicka D, Ulbrich K (2010) Polyoxazoline thermoresponsive micelles as radionuclide delivery systems. Macromol Biosci 10:916–924CrossRefGoogle Scholar
  4. 4.
    Angelova A, Angelov B, Mutafchieva R, Lesieur S (2015) Biocompatible mesoporous and soft nanoarchitectures. J Inorg Organomet Polym Mater 25:214–232CrossRefGoogle Scholar
  5. 5.
    Kyriakos K, Aravopoulou D, Augsbach L, Sapper J, Ottinger S, Psylla C, Aghebat Rafat A, Benitez-Montoya CA, Miasnikova A, Di Z, Laschewsky A, Müller-Buschbaum P, Kyritsis A, Papadakis CM (2014) Novel thermoresponsive block copolymers having different architectures—structural, rheological, thermal, and dielectric investigations. Colloid Polym Sci 292:1757–1774CrossRefGoogle Scholar
  6. 6.
    Kyriakos K, Philipp M, Lin CH, Dyakonova M, Vishnevetskaya N, Grillo I, Zaccone A, Miasnikova A, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2016) Quantifying the interactions in the aggregation of thermoresponsive polymers: the effect of cononsolvency. Macromol Rapid Commun 27:420–425CrossRefGoogle Scholar
  7. 7.
    Ahn H, Naidu S, Ryu DY, Cho J (2009) Phase behavior of a weakly interacting polystyrene and poly(n-hexyl methacrylate) system: evidence for the coexistence of UCST and LCST. Macromol Rapid Commun 30:469–474CrossRefGoogle Scholar
  8. 8.
    Takahashi R, Sato T, Terao K, Qiu XP, Winnik FM (2012) Self-association of a thermosensitive poly(alkyl-2-oxazoline) block copolymer in aqueous solution. Macromolecules 45:6111–6119CrossRefGoogle Scholar
  9. 9.
    Sommer C, Pedersen JS, Garamus VM (2005) Structure and interactions of block copolymer micelles of brij 700 studied by combining small-angle X-ray and neutron scattering. Langmuir 21:2137–2149CrossRefGoogle Scholar
  10. 10.
    Chiba A, Hashimoto T, Hasegawa H, Hadjichristidis N (2005) Study on micro-phase separation of polyethylene oxide-poly(2-vinylpylidine) block copolymer by small-angle x-ray scattering. Polym Prepr 54:767Google Scholar
  11. 11.
    Zhao J, Zhang G, Pispas S (2009) Morphological transitions in aggregates of thermosensitive poly(ethylene oxide)-b-poly(N-isopropylacrylamide) block copolymers prepared via RAFT polymerization. J Polym Sci A Polym Chem 47:4099–4110CrossRefGoogle Scholar
  12. 12.
    Papagiannopoulos A, Zhao J, Zhang G, Pispas S (2013) Thermoresponsive transition of a PEO-b-PNIPAM copolymer: from hierarchical aggregates to well defined ellipsoidal vesicles. Polymer 54:6373–6380CrossRefGoogle Scholar
  13. 13.
    Škvarla J, Zedník J, Šlouf M, Pispas S, Štěpánek M (2014) Poly(N-isopropyl acrylamide)-block-poly(n-butyl acrylate) thermoresponsive amphiphilic copolymers: synthesis, characterization and self-assembly behavior in aqueous solutions. Eur Polym J 61:124–132CrossRefGoogle Scholar
  14. 14.
    Papagiannopoulos A, Meristoudi A, Pispas S, Keiderling U (2016) Thermoresponsive behavior of micellar aggregates from end-functionalized PnBA-b-PNIPAM-COOH block copolymers and their complexes with lysozyme. Soft Matter 12:6547–6556CrossRefGoogle Scholar
  15. 15.
    Islam MT, Khan M, Shin T, Park SY (2015) Self-assembly of a liquid crystal ABA triblock copolymer in a B-selective organic solvent. Polymer 66:94–99CrossRefGoogle Scholar
  16. 16.
    Miasnikova A, Laschewsky A, De Paoli G, Papadakis CM, Müller-Buschbaum P, Funari SS (2012) Thermoresponsive hydrogels from symmetrical triblock copolymers poly(styrene-block-(methoxy diethylene glycol acrylate)-block-styrene). Langmuir 28:4479–4490CrossRefGoogle Scholar
  17. 17.
    Adelsberger J, Bivigou-Koumba AM, Miasnikova A, Busch P, Laschewsky A, Müller-Buschbaum P, Papadakis CM (2015) Polystyrene-block-poly (methoxy diethylene glycol acrylate)-block-polystyrene triblock copolymers in aqueous solution—a SANS study of the temperature-induced switching behavior. Colloid Polym Sci 293:1515–1523CrossRefGoogle Scholar
  18. 18.
    Papagiannopoulos A, Zhao J, Zhang G, Pispas S, Radulescu A (2014) Thermoresponsive aggregation of PS-PNIPAM-PS triblock copolymer: a combined study of light scattering and small angle neutron scattering. Eur Polym J 56:59–68CrossRefGoogle Scholar
  19. 19.
    Amann M, Willner L, Stellbrink J, Radulescu A, Richter D (2015) Studying the concentration dependence of the aggregation number of a micellar model system by SANS. Soft Matter 11:4208–4217CrossRefGoogle Scholar
  20. 20.
    Liu Y, Chen SH (1999) Analysis of the structure, interaction, and viscosity of pluronic micelles in aqueous solutions by combined neutron and light scatterings. ACS Symp Ser 739:270–296CrossRefGoogle Scholar
  21. 21.
    Lobry L, Micali N, Mallamace FC, Liao C, Chen SH (1999) Interaction and percolation in the L64 triblock copolymer micellar system. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 60:7076–7087Google Scholar
  22. 22.
    Mortensen K, Talmon Y (1995) Cryo-TEM and SANS microstructural study of pluronic polymer solutions. Macromolecules 28:8829–8834CrossRefGoogle Scholar
  23. 23.
    Prud’homme RK, Wu G, Schneider DK (1996) Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution. Langmuir 12:4651–4659CrossRefGoogle Scholar
  24. 24.
    Wu C, Liu T, Chu B, Schneider DK, Graziano V (1997) Characterization of the PEO-PPO-PEO triblock copolymer and its application as a separation medium in capillary electrophoresis. Macromolecules 30:4574–4583CrossRefGoogle Scholar
  25. 25.
    Liu Y, Chen SH, Huang JS (1998) Small-angle neutron scattering analysis of the structure and interaction of triblock copolymer micelles in aqueous solution. Macromolecules 31:2236–2244CrossRefGoogle Scholar
  26. 26.
    Mortensen K, Brown WYN (1993) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. The Influence of Relative Block Size Macromolecules 26:4128–4135Google Scholar
  27. 27.
    Mortensen K, Pedersen JS (1993) Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution. Macromolecules 26:805–812CrossRefGoogle Scholar
  28. 28.
    Hech E, Mortensen K, Hoffmann H (1995) L3 phase in a binary block copolymer/water system. Macromolecules 28:5465–5476CrossRefGoogle Scholar
  29. 29.
    Wu G, Chu B, Schneider DK (1995) SANS study of the micellar structure of PEO/PPO/PEO aqueous solution. J Phys Chem 99:5094–5101CrossRefGoogle Scholar
  30. 30.
    Borbély S (1997) Small-angle neutron scattering study of Pluronic F68 tri-block copolymer solutions. Phys B Condens Matter 241-243:1016–1018CrossRefGoogle Scholar
  31. 31.
    Filippov SK, Bogomolova A, Kaberov L, Velychkivska N, Starovoitova L, Cernochova Z, Rogers S, Lau WM, Khutoryanskiy VV, Cook MT (2016) Internal structure of nanoparticles formed by self-assembly of temperature-responsive PNIPAM-b-PEG-b-PNIPAM triblock copolymers: NMR and SANS studies. Langmuir 32:5314–5323CrossRefGoogle Scholar
  32. 32.
    Opsteen JA, van Hest JCM (2007) Modular synthesis of ABC type block copolymers by ‘“ click ”’ chemistry. J Polym Sci A Polym Chem 45:2913–2924CrossRefGoogle Scholar
  33. 33.
    Beaucage G (1995) Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr 28:717–728CrossRefGoogle Scholar
  34. 34.
    Hammouda B (2010) Analysis of the Beaucage model. J Appl Crystallogr 43:1474–1478CrossRefGoogle Scholar
  35. 35.
    Hammouda B, Jia D, Cheng D (2015) Single-chain conformation for interacting poly(N-isopropylacrylamide) in aqueous solution. J Sci Technol 3:8Google Scholar
  36. 36.
    Ma D, Chen H, Shi D, Li Z, Wang J (2009) Preparation and characterization of thermo-responsive PDMS surfaces grafted with poly(N-isopropylacrylamide) by benzophenone-initiated photopolymerization. J Colloid Interface Sci 332:85–90CrossRefGoogle Scholar
  37. 37.
    Lin JB, Isenberg BC, Shen Y, Schorsch K, Sazonova OV, Wong JY (2012) Thermo-responsive poly(N-isopropylacrylamide) grafted onto microtextured poly(dimethylsiloxane) for aligned cell sheet engineering. Colloids Surf B: Biointerfaces 1:108–115CrossRefGoogle Scholar
  38. 38.
    Xu J, Qiu M, Ma B, He C (2014) “Near perfect” amphiphilic conetwork based on end-group cross-linking of polydimethylsiloxane triblock copolymer via atom transfer radical polymerization. ACS Appl Mater Interfaces 6:15283–15290CrossRefGoogle Scholar
  39. 39.
    Car A, Baumann P, Duskey JT, Chami M, Bruns N, Meier W (2014) pH-Responsive PDMS-b-PDMAEMA micelles for intracellular anticancer drug delivery. Biomacromolecules 15:3235–3245CrossRefGoogle Scholar
  40. 40.
    Seo JH, Matsuno R, Konno T, Takai M, Ishihara K (2008) Surface tethering of phosphorylcholine groups onto poly(dimethylsiloxane) through swelling deswelling methods with phospholipids moiety containing ABA-type block copolymers. Biomaterials 29:1367–1376CrossRefGoogle Scholar
  41. 41.
    Song S, Zhai Y, Zhang Y (2016) Bioinspired graphene oxide/polymer nanocomposite paper with high strength, toughness, and dielectric constant. ACS Appl Mater Interfaces 8:31264–31272CrossRefGoogle Scholar
  42. 42.
    Bogomolova A, Filippov SK, Starovoytova L, Angelov B, Konarev P, Svergun DI, Sedlacek O, Hruby M, Stepanek P (2014) Study of thermosensitive amphiphilic poly-oxazolines of complex nature and their interaction with ionic surfactants. Hydrophobic, thermosensitive and hydrophilic moieties: are they equally important? J Phys Chem B 118:4940–4950CrossRefGoogle Scholar
  43. 43.
    Sergeeva O, Vlasov PS, Domnina NS, Bogomolova A, Konarev P, Svergun DI, Walterova Z, Horsky J, Stepanek P, Filippov SK (2014) Novel thermosensitive telechelic PEGs with antioxidant activity: synthesis, molecular properties and conformational behaviour. RSC Adv 4:41763–41771CrossRefGoogle Scholar
  44. 44.
    Filippov SK, Lezov AV, Sergeeva O, Olifirenko A, Lesnichin S, Domnina NS, Komarova E, Almgren M, Karlsson G, Štepanek P (2008) Aggregation of dextran hydrophobically modified by sterically-hindered phenols in aqueous solutions: aggregates vs. single molecules. Eur Polym J 44:3361–3369CrossRefGoogle Scholar
  45. 45.
    Porod G (1951) Die Röntgenkleinkelstreuung von Dicht Gepackten kolloiden Systemen. Kolloid-Z 123:83–114CrossRefGoogle Scholar
  46. 46.
    Stepanek M, Matejicek P, Prochazka K, Filippov SK, Angelov B, Šlouf M, Mountrichas G, Pispas S (2011) Langmuir 27:5275–5281CrossRefGoogle Scholar
  47. 47.
    Thünemann AF, Bienert R, Appelhans D, Voit B (2012) Core-shell structures of oligosaccharide-functionalized hyperbranched poly(ethylene imines). Macromol Chem Phys 213:2362–2369CrossRefGoogle Scholar
  48. 48.
    Izawa K, Ogasawara T, Masuda H, Okabayashi H, Monkenbusch M, O’Connor CJ (2002) Growth process for fractal polymer aggregates formed by perfluorooctyltriethoxysilane. Time-resolved small-angle x-ray scattering spectra and the application of the unified equation. Colloid Polym Sci 280:725–735CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Pharmacy & Research Centre in Topical Drug Delivery and ToxicologyUniversity of HertfordshireHatfieldUK
  2. 2.Institute of Macromolecular Chemistry, AS CRPragueCzech Republic
  3. 3.School of PharmacyUniversity of ReadingReadingUK

Personalised recommendations