Colloid and Polymer Science

, Volume 294, Issue 12, pp 2021–2028 | Cite as

Antimicrobial and antifouling nanocomposite hydrogels containing polythioether dendron: high-loading silver nanoparticles and controlled particle release

  • Daoyi Jiang
  • Yanyan Zhang
  • Fangmin Zhang
  • Zhixiong Liu
  • Jin Han
  • Xuedong Wu
Original Contribution

Abstract

A series of nanocomposite (NC) hydrogels containing dendritic polythioether segments were successfully prepared by free radical copolymerization. Due to the multiple thioether functional groups and the strong chelating ability of the thioether groups with metal elements, these hydrogels showed excellent absorption towards Ag nanoparticles. The size of the Ag nanoparticles (AgNPs) embedded in the hydrogel matrix can be regulated by tuning the content of dendritic segments in the polymer matrix. Small-sized AgNPs were formed with increasing of the content of polythioether dendrons. Besides, the Ag release kinetics was investigated. The hydrogels containing dendrons showed higher AgNPs loading and displayed enhanced retention of nanoparticles as compared with the pristine poly-N-isopropyl acrylamide (PNIPAM) hydrogel. Furthermore, these NC hydrogels, especially those containing dendritic segments, showed much better antimicrobial performance for Escherichia coli and anti-algae performance. These NC hydrogels have promising applications in marine antifouling coating and interfaces of biomaterials.

Keywords

Hydrogels Polythioether AgNPs Antifouling 

References

  1. 1.
    Rolando B, Daniela P, Gabriele G, et al. (2011) A novel strategy for engineering hydrogels with ferromagnetic nanoparticles as crosslinkers of the polymer chains. Potential applications as a targeted drug delivery system. Soft Matter 7:5558–5565CrossRefGoogle Scholar
  2. 2.
    Carla AD, Aline D, Fátima CB, et al. (2014) A magnetic nanogel based on O-carboxymethylchitosan for antitumor drug delivery: synthesis, characterization and in vitro drug release. Soft Matter 10:3441–3450CrossRefGoogle Scholar
  3. 3.
    Gaharwar AK, Peppas NA, Khademhosseini A (2014) Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 111:441–453CrossRefGoogle Scholar
  4. 4.
    Carole A, Thibaud C (2012) Nanocomposites from biopolymer hydrogels: blueprints for white biotechnology and green materials chemistry. J Polym Sci B Polym Phys 50:669–680CrossRefGoogle Scholar
  5. 5.
    Xu S, Zhang J, Paquet C, et al. (2003) From hybrid microgels to photonic crystals. Adv Funct Mater 13:468–472CrossRefGoogle Scholar
  6. 6.
    Butun S, Sahiner N (2011) A versatile hydrogel template for metal nano particle preparation and their use in catalysis. Polymer 52(21):4834–4840CrossRefGoogle Scholar
  7. 7.
    Ramos J, Potta T, Scheideler O, et al. (2014) Parallel synthesis of poly (amino ether)-templated plasmonic nanoparticles for transgene delivery. ACS Appl Mater Interfaces 6(17):14861–14873CrossRefGoogle Scholar
  8. 8.
    Thomas V, Yallapu MM, Sreedhar B, et al. (2007) A versatile strategy to fabricate hydrogel–silver nanocomposites and investigation of their antimicrobial activity. J Colloid Interface Sci 315(1):389–395CrossRefGoogle Scholar
  9. 9.
    Pollini M, Paladini F, Catalano M, et al. (2011) Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. J Mater Sci Mater Med 22(9):2005–2012CrossRefGoogle Scholar
  10. 10.
    Organomet EM (2011) Gamma radiation synthesis and characterization of starch based polyelectrolyte hydrogels loaded silver nanoparticles. J Inorg organomental Polym Mater 21:297–305CrossRefGoogle Scholar
  11. 11.
    Hu B, Wang SB, Wang K, et al. (2008) Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: self-assembly into multilayered films and their optical properties. J Phys Chem C 112(30):11169–11174CrossRefGoogle Scholar
  12. 12.
    Mahmoudi M, Simchi A, Mohammad I, et al. (2009) Superparamagnetic iron oxide nanoparticles with rigid cross-linked polyethylene glycol fumarate coating for application in imaging and drug delivery. J Phys Chem C 113(19):8124–8131CrossRefGoogle Scholar
  13. 13.
    AshaRani PV, Low Kah Mun G, Hande MP, et al. (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3(2):279–290CrossRefGoogle Scholar
  14. 14.
    Pasqui D, Atrei A, Giani G, et al. (2011) Metal oxide nanoparticles as cross-linkers in polymeric hybrid hydrogels. Mater Lett 65(2):392–395CrossRefGoogle Scholar
  15. 15.
    Messing R, Frickel N, Belkoura L, et al. (2011) Cobalt ferrite nanoparticles as multifunctional cross-linkers in PAAm ferrohydrogels. Macromolecules 44(8):2990–2999CrossRefGoogle Scholar
  16. 16.
    Zhou YX, Sharma N, Deshmukh P, et al. (2011) Hierarchically structured free-standing hydrogels with liquid crystalline domains and magnetic nanoparticles as dual physical cross-linkers. J Am Chem Soc 134(3):1630–1641CrossRefGoogle Scholar
  17. 17.
    García-Astrain C, Chen C, Burón M, et al. (2015) Biocompatible hydrogel nanocomposite with covalently embedded silver nanoparticles. Biomacromolecules 16(4):1301–1310CrossRefGoogle Scholar
  18. 18.
    Baek K, Liang J, Lim WT, et al. (2015) In situ assembly of antifouling/bacterial silver nanoparticle-hydrogel composites with controlled particle release and matrix softening. ACS Appl Mater Interfaces 7(28):15359–15367CrossRefGoogle Scholar
  19. 19.
    Newkome GR, Moorefield CN, Vögtle F (1996) Dendritic molecules: concepts syntheses, and applications. Weinheim, Wiley-VCHCrossRefGoogle Scholar
  20. 20.
    Newkome GR, Moorefield CN, Vögtle F (2009) Dendrimer chemistry: concepts, synthesis, properties, applications. Weinheim, Wiley-VCHGoogle Scholar
  21. 21.
    Fréchet JMJ, Tomalia DA (2001) Dendrimers and other dendritic polymers. Weinheim, Wiley-VCHCrossRefGoogle Scholar
  22. 22.
    Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry: concepts, synthesis, properties, applications. Weinheim, Wiley-VCHCrossRefGoogle Scholar
  23. 23.
    Caminade AM, Majoral JP (2004) Nanomaterials based on phosphorus dendrimers. Acc Chem Res 37(6):341–348CrossRefGoogle Scholar
  24. 24.
    Caminade AM, Majoral JP (2005) Phosphorus dendrimers for the controlled elaboration of organic–inorganic materials. J Mater Chem 15:3643–3649CrossRefGoogle Scholar
  25. 25.
    Smith DK (2006) Dendritic supermolecules—towards controllable nanomaterials. Chem Commun 37(1):34–44CrossRefGoogle Scholar
  26. 26.
    Scott RWJ, Wilson OM, Crooks RM, et al. (2005) Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J Phys Chem B 109(2):692–704CrossRefGoogle Scholar
  27. 27.
    Bronstein LM, Shifrina ZB (2011) Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chem Rev 111(9):5301–5344CrossRefGoogle Scholar
  28. 28.
    Feng CL, Zhong X H, Steinhart M, et al. (2007) Graded-bandgap quantum-dot-modified nanotubes: a sensitive biosensor for enhanced detection of DNA hybridization. Adv Mater 19(15):1933–1936CrossRefGoogle Scholar
  29. 29.
    Vivek B, Kumar P, Prasad E (2016) Induction and tunability of self-healing property of dendron based hydrogel using clay nanocomposite. J Phys Chem B 120(23):5262–5271CrossRefGoogle Scholar
  30. 30.
    Shaw CF (1999) Gold-based therapeutic agents. Chem Rev 99(9):2589–2600CrossRefGoogle Scholar
  31. 31.
    Sardar R, Funston AM, Mulvaney P, et al. (2009) Gold nanoparticles: past, present, and future. Langmuir 25(24):13840–13851CrossRefGoogle Scholar
  32. 32.
    Jiang DY, Wang G, Zheng F, et al. (2014) Novel thermo-sensitive hydrogels containing polythioether dendrons: facile tuning of LCSTs, strong absorption of Ag ions, and embedment of smaller Ag nanocrystals. Polym Chem 6(4):625–632CrossRefGoogle Scholar
  33. 33.
    Jiang DY, Liu ZX, He XY, et al. (2016) Polyacrylamide strengthened mixed-charge hydrogels and their applications in resistance to protein adsorption and algae attachment. RSC Adv 6(53):47349–47356CrossRefGoogle Scholar
  34. 34.
    Jiang DY, Liu ZX, Han J, et al. (2016) A tough nanocomposite hydrogel for antifouling application with quaternized hyperbranched PEI nanoparticles crosslinking. RSC Adv 6:60530–60536CrossRefGoogle Scholar
  35. 35.
    Korsmqer RW, Gumy R, Doelker E, et al. (1982) Mechanisms of solute release from porous hydrophilic polymers. Int J Pharm 15:25–35CrossRefGoogle Scholar
  36. 36.
    Krstic J, Spasojevic J, Radosavljevic A, et al. (2014) In vitro silver ion release kinetics from nanosilver/poly (vinyl alcohol) hydrogels synthesized by gamma irradiation. J Appl Polym Sci 131(11):169–172CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Daoyi Jiang
    • 1
  • Yanyan Zhang
    • 1
  • Fangmin Zhang
    • 1
  • Zhixiong Liu
    • 1
  • Jin Han
    • 1
  • Xuedong Wu
    • 1
  1. 1.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China

Personalised recommendations