Advertisement

Colloid and Polymer Science

, Volume 294, Issue 10, pp 1679–1685 | Cite as

PEGylated liposomes prepared with polyborane instead of cholesterol for BNCT: characteristics and biodistribution evaluation

  • Issei Takeuchi
  • Keishiro Tomoda
  • Koji Matsumoto
  • Hiromi Uchiro
  • Kimiko Makino
Original Contribution

Abstract

Recently, boron neutron capture therapy (BNCT) has been focused on, which is a cancer therapy using nuclear reaction between boron and thermal neutron. To selectively destroy cancer cells, the high accumulation and selective delivery of boron-10 (10B) into tumor tissue are required. We have developed polyborane from 1,7-dicarba-closo-dodecaborane as a boron carrier. To evaluate tumor accumulation of polyborane, PEGylated liposomes were chosen as carrier. The mean volume diameters of polyborane-embedded liposomes were 50, 100, and 200 nm, respectively. They were injected into the tail vein of tumor-bearing mice. Twenty-four hours later, mice were killed and biodistribution of boron was determined using the inductively coupled plasma atomic emission spectrometry. At 24 h after injection, 50 nm bare liposome and 100 nm PEGylated liposome were found in tumor with high boron levels. Moreover, 50 nm bare liposome showed high tumor/blood ratios of boron concentration, and their usability for BNCT was suggested.

Keywords

Boron neutron capture therapy PEGylation Liposomes Drug delivery Dicarba-closo-dodecaborane Biodistribution 

Notes

Acknowledgments

This work was supported by Program for Development of Strategic Research Center in Private Universities supported by MEXT (2010–2014).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barth RF, Coderrea JA, Vicente MGH (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002. doi: 10.1158/1078-0432.CCR-05-0035 CrossRefGoogle Scholar
  2. 2.
    Maruyama K, Ishida O, Kasaoka S, Takizawa T, Utoguchi N, Shinohara A, Chiba M, Kobayashi H, Eriguchi M, Yanagie H (2004) Intracellular targeting of sodium mercaptoundecahydrododecaborate (BSH) to solid tumors by transferrin-PEG liposomes, for boron neutron-capture therapy (BNCT). J Control Rel 98:195–207. doi: 10.1016/j.jconrel.2004.04.018 CrossRefGoogle Scholar
  3. 3.
    Vicente MGH, Wickramasinghe A, Nurco DJ, Wang HJH, Nawrocky MM, Makar M, Miura M (2003) Synthesis, toxicity and biodistribution of two 5,15-di[3,5-(nidocarboranylmethyl)phenyl]porphyrins in EMT-6 tumor bearing mice. Bioorganic Med Chem 11:3101–3108. doi: 10.1016/S0968-0896(03)00240-2 CrossRefGoogle Scholar
  4. 4.
    Yanagië H, Tomita T, Kobayashi H, Fujii Y, Takahashi T, Hasumi K, Nariuchi H, Sekiguchi M (1991) Application of boronated anti-CEA immunoliposome to tumour cell growth inhibition in in vitro boron neutron capture therapy model. Br J Cancer 63:522–526CrossRefGoogle Scholar
  5. 5.
    Yanagië H, Tomita T, Kobayashi H, Fujii Y, Nonaka Y, Saefusa Y, Hasumi K, Eriguchi M, Kobayashi T, Ono K (1997) Inhibition of human pancreatic cancer growth in nude mice by boron neutron capture therapy. Br J Cancer 75:660–665CrossRefGoogle Scholar
  6. 6.
    Hawthorne MF, Shelly K (1997) Liposomes as drug delivery vehicles for boron agents. J Neuro Oncol 33:53–58CrossRefGoogle Scholar
  7. 7.
    Danhier F, Feron O, Préat V (2010) To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Cont Rel 148:135–146. doi: 10.1016/j.jconrel.2010.08.027 CrossRefGoogle Scholar
  8. 8.
    Allen TM, Hansen C (1991) Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1068:133–141. doi: 10.1016/0005-2736(91)90201-I CrossRefGoogle Scholar
  9. 9.
    Lasic DD (1996) Doxorubicin in sterically stabilized liposomes. Nature 380:561–562. doi: 10.1038/380561a0 CrossRefGoogle Scholar
  10. 10.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Cont Rel 65:271–284. doi: 10.1016/S0168-3659(99)00248-5 CrossRefGoogle Scholar
  11. 11.
    Carlsson J, Kullberg EB, Capala J, Sjöberg S, Edwards K, Gedd L (2003) Ligand liposomes and boron neutron capture therapy. J Neuro Oncol 62:47–59. doi: 10.1023/A:1023282818409 Google Scholar
  12. 12.
    Shmeeda H, Tzemach D, Mak L, Gabizon A (2009) Her2-targeted pegylated liposomal doxorubicin: retention of target-specific binding and cytotoxicity after in vivo passage. J Cont Rel 136:155–160. doi: 10.1016/j.jconrel.2009.02.002 CrossRefGoogle Scholar
  13. 13.
    Liu D, Mori A, Huang L (1992) Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta 1104:95–101. doi: 10.1016/0005-2736(92)90136-A CrossRefGoogle Scholar
  14. 14.
    Yang W, Barth RF, Rotaru JH, Moeschberger ML, Joel DD, Nawrocky MM, Goodman JH (1997) Enhanced survival of glioma bearing rats following boron neutron capture therapy with blood-brain barrier disruption and intracarotid injection of boronophenylalanine. J Neuro-Oncol 33:59–70. doi: 10.1023/A:1005769214899 CrossRefGoogle Scholar
  15. 15.
    Shirakawa M, Yamamto T, Nakai K, Aburai K, Kawatobi S, Tsurubuchi T, Yamamoto Y, Yokoyama Y, Okuno H, Matsumura A (2009) Synthesis and evaluation of a novel liposome containing BPA–peptide conjugate for BNCT. Appl Radiat Isot 67:S88–S90. doi: 10.1016/j.apradiso.2009.03.101 CrossRefGoogle Scholar
  16. 16.
    Lee JD, Ueno M, Miyajima Y, Nakamura H (2007) Synthesis of boron cluster lipids: closo-dodecaborate as an alternative hydrophilic function of boronated liposomes for neutron capture therapy. Org Lett 9:323–326. doi: 10.1021/ol062840+ CrossRefGoogle Scholar
  17. 17.
    Valliant JF, Guenther KJ, King AS, Morel P, Schaffer P, Sogbein OO, Stephenson KA (2002) The medicinal chemistry of carboranes. Coord Chem Rev 232:173–230. doi: 10.1016/S0010-8545(02)00087-5 CrossRefGoogle Scholar
  18. 18.
    Bregadze VI (1992) Dicarba-closo-dodecaboranes C2Bl0H12 and their derivatives. Chem Rev 92:209–223. doi: 10.1021/cr00010a002 CrossRefGoogle Scholar
  19. 19.
    Coult R, Fox MA, Gill WR, Herbertson PL, Macbride JAH, Wade K (1993) C-arylation and C-heteroarylation of icosahedral carboranes via their copper (I) derivatives. J Organomet Chem 462:19–29. doi: 10.1016/0022-328x(93)83337-U CrossRefGoogle Scholar
  20. 20.
    Zheng Z, Jiang W, Zinn AA, Knobler CB, Hawthorne MF (1995) Facile electrophilic iodination of icosahedral carboranes. Synthesis of carborane derivatives with boron-carbon bonds via the palladium-catalyzed reaction of diiodocarboranes with Grignard reagents. Inorg Chem 34:2095–2100. doi: 10.1021/ic00112a023 CrossRefGoogle Scholar
  21. 21.
    Endo Y, Iijima T, Yamakoshi Y, Fukasawa H, Miyaura C, Inada M, Kubo A, Itai A (2001) Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Chem Biol 8:341–355. doi: 10.1021/bc060075d CrossRefGoogle Scholar
  22. 22.
    Thirumamagal BTS, Zhao XB, Bandyopadhyaya AK, Narayanasamy S, Johnsamuel J, Tiwari R, Golightly DW, Patel V, Jehning BT, Backer MV, Barth RF, Lee RJ, Backer JM, Tjarks W (2006) Potent estrogenic agonists bearing dicarba-closo-dodecaborane as a hydrophobic pharmacophore. Bioconjug Chem 17:1141–1150. doi: 10.1021/jm9900725 CrossRefGoogle Scholar
  23. 23.
    Endo Y, Iijima T, Yamakoshi Y, Yamaguchi M, Fukasawa H, Shudo K (1999) Potent estrogen agonists based on carborane as a hydrophobic skeletal structure: a new medicinal application of boron clusters. J Med Chem 42:1501–1504. doi: 10.1016/S1074-5521(01)00016-3 CrossRefGoogle Scholar
  24. 24.
    Ueno M, Ban HS, Nakai K, Inomata R, Kaneda Y, Matsumura A, Nakamura H (2010) Dodecaborate lipid liposomes as new vehicles for boron delivery system of neutron capture therapy. Bioorganic Med Chem 18:3059–3065. doi: 10.1016/j.bmc.2010.03.050 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Issei Takeuchi
    • 1
    • 2
    • 3
  • Keishiro Tomoda
    • 1
    • 2
    • 3
  • Koji Matsumoto
    • 1
  • Hiromi Uchiro
    • 1
    • 2
    • 3
  • Kimiko Makino
    • 1
    • 2
    • 3
  1. 1.Faculty of Pharmaceutical SciencesTokyo University of ScienceChibaJapan
  2. 2.Center for Drug Delivery ResearchTokyo University of ScienceChibaJapan
  3. 3.Center for Physical PharmaceuticsTokyo University of ScienceChibaJapan

Personalised recommendations