Colloid and Polymer Science

, Volume 294, Issue 9, pp 1463–1473 | Cite as

Rheological behavior of poly(acrylonitrile) concentrated solutions: effect of Sb2O3 nanoparticles on shear and extensional flow

  • Omid Akhlaghi
  • Yusuf Z. Menceloglu
  • Ozge Akbulut
Original Contribution

Abstract

This study investigates the effect of antimony trioxide (Sb2O3) nanoparticles on shear and extensional flow properties of concentrated polyacrylonitrile (PAN) solutions. Through shear rheology, a wide variety of rheological observations, such as Payne effect, applicability of Cox–Merz rule, and range of linear viscoelastic behavior (critical strain) were assessed. The presence of Sb2O3 nanoparticles was found to promote the non-linear viscoelasticity of the solutions and give rise to enhanced heterogeneous domains of PAN in the solution. In elongational flow, thinning dynamics of the nanocomposites was tracked to reproduce the dynamics of deformation in the spinline of the dry-jet wet spinning process. Increasing amounts of Sb2O3 nanoparticles in the solution were shown to improve the lifetime of the filament. All solutions were ruptured through elastocapillary behavior, while strengthened strain-hardening behavior was observed after the addition of Sb2O3 nanoparticles to the polymer solution.

Keywords

Capillary breakup extensional rheometry Polyacrylonitrile Nanocomposite Rheology 

References

  1. 1.
    Lu H, Wilkie CA (2010) Synergistic effect of carbon nanotubes and decabromodiphenyl oxide/Sb2O3 in improving the flame retardancy of polystyrene. Polym Degrad Stab 95(4):564–571. doi:10.1016/j.polymdegradstab.2009.12.011 CrossRefGoogle Scholar
  2. 2.
    M. Lewin SMA, E.M. Pearce (1978) Flame—retardant polymeric materials, vol 2. Plenum Press, New YorkGoogle Scholar
  3. 3.
    W.D. Schindler PJH (2004) Chemical finishing of textiles. Woodhead Publishing Limited, EnglandGoogle Scholar
  4. 4.
    Li N, Xia Y, Mao Z, Wang L, Guan Y, Zheng A (2012) Influence of antimony oxide on flammability of polypropylene/intumescent flame retardant system. Polym Degrad Stab 97(9):1737–1744. doi:10.1016/j.polymdegradstab.2012.06.011 CrossRefGoogle Scholar
  5. 5.
    Si M, Feng J, Hao J, Xu L, Du J (2014) Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly(ethylene terephthalate). Polym Degrad Stab 100:70–78. doi:10.1016/j.polymdegradstab.2013.12.023 CrossRefGoogle Scholar
  6. 6.
    Rahaman MSA, Ismail AF, Mustafa A (2007) A review of heat treatment on polyacrylonitrile fiber. Polym Degrad Stab 92(8):1421–1432. doi:10.1016/j.polymdegradstab.2007.03.023 CrossRefGoogle Scholar
  7. 7.
    Nataraj SK, Yang KS, Aminabhavi TM (2012) Polyacrylonitrile-based nanofibers—a state-of-the-art review. Prog Polym Sci 37(3):487–513. doi:10.1016/j.progpolymsci.2011.07.001 CrossRefGoogle Scholar
  8. 8.
    Hall ME, Zhang J, Richard Horrocks A (1994) The flammability of polyacrylonitrile and its copolymers III. Effect of flame retardants. Fire Mater 18(4):231–241. doi:10.1002/fam.810180406 CrossRefGoogle Scholar
  9. 9.
    Tan L, Pan J, Wan A (2012) Shear and extensional rheology of polyacrylonitrile solution: effect of ultrahigh molecular weight polyacrylonitrile. Colloid Polym Sci 290(4):289–295. doi:10.1007/s00396-011-2546-1 CrossRefGoogle Scholar
  10. 10.
    Tan L, Liu S, Pan D (2009) Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution during thermal-induced gelation. J Phys Chem B 113(3):603–609. doi:10.1021/jp809701b CrossRefGoogle Scholar
  11. 11.
    Xu L, Qiu F (2015) Unusual viscosity behavior of polyacrylonitrile in NaSCN aqueous solutions. Polymer 64:130–138. doi:10.1016/j.polymer.2015.03.043 CrossRefGoogle Scholar
  12. 12.
    Zhang D, Karki AB, Rutman D, Young DP, Wang A, Cocke D, Ho TH, Guo Z (2009) Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: Fabrication and property analysis. Polymer 50(17):4189–4198. doi:10.1016/j.polymer.2009.06.062 CrossRefGoogle Scholar
  13. 13.
    Newcomb BA, Chae HG, Gulgunje PV, Gupta K, Liu Y, Tsentalovich DE, Pasquali M, Kumar S (2014) Stress transfer in polyacrylonitrile/carbon nanotube composite fibers. Polymer 55(11):2734–2743. doi:10.1016/j.polymer.2014.04.008 CrossRefGoogle Scholar
  14. 14.
    Mataram A, Ismail AF, Mahmod DSA, Matsuura T (2010) Characterization and mechanical properties of polyacrylonitrile/silica composite fibers prepared via dry-jet wet spinning process. Mater Lett 64(17):1875–1878. doi:10.1016/j.matlet.2010.05.031 CrossRefGoogle Scholar
  15. 15.
    Liu X, Zhu C, Dong H, Wang B, Liu R, Zhao N, Li S, Xu J (2015) Effect of microgel content on the shear and extensional rheology of polyacrylonitrile solution. Colloid Polym Sci 293(2):587–596. doi:10.1007/s00396-014-3419-1 CrossRefGoogle Scholar
  16. 16.
    Akhlaghi O, Akbulut O, Menceloglu YZ (2015) Shear and extensional rheological characterization of poly(acrylonitrile)/halloysite nanocomposite solutions. Eur Polym J 73:17–25. doi:10.1016/j.eurpolymj.2015.09.022 CrossRefGoogle Scholar
  17. 17.
    Chen B, Evans JRG, Greenwell HC, Boulet P, Coveney PV, Bowden AA, Whiting A (2008) A critical appraisal of polymer-clay nanocomposites. Chem Soc Rev 37(3):568–594. doi:10.1039/B702653F CrossRefGoogle Scholar
  18. 18.
    Du W, Chen H, Xu H, Pan D, Pan N (2009) Viscoelastic behavior of polyacrylonitrile/dimethyl sulfoxide concentrated solution with water. J Polym Sci B Polym Phys 47(15):1437–1442. doi:10.1002/polb.21743 CrossRefGoogle Scholar
  19. 19.
    Haward SJ, Sharma V, Butts CP, McKinley GH, Rahatekar SS (2012) Shear and extensional rheology of cellulose/ionic liquid solutions. Biomacromolecules 13(5):1688–1699. doi:10.1021/bm300407q CrossRefGoogle Scholar
  20. 20.
    A.R. Horrocks SCA (2000) Handbook of Technical Textiles. Woodhead Publishing Limited, EnglandGoogle Scholar
  21. 21.
    Cassagnau P (2003) Payne effect and shear elasticity of silica-filled polymers in concentrated solutions and in molten state. Polymer 44(8):2455–2462. doi:10.1016/S0032-3861(03)00094-6 CrossRefGoogle Scholar
  22. 22.
    Jeon HS, Rameshwaram JK, Kim G, Weinkauf DH (2003) Characterization of polyisoprene–clay nanocomposites prepared by solution blending. Polymer 44(19):5749–5758. doi:10.1016/S0032-3861(03)00466-X CrossRefGoogle Scholar
  23. 23.
    Shen L, Lin Y, Du Q, Zhong W, Yang Y (2005) Preparation and rheology of polyamide-6/attapulgite nanocomposites and studies on their percolated structure. Polymer 46(15):5758–5766. doi:10.1016/j.polymer.2005.05.040 CrossRefGoogle Scholar
  24. 24.
    Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49(9):2183–2196. doi:10.1016/j.polymer.2007.12.035 CrossRefGoogle Scholar
  25. 25.
    Yin H, Chen H, Chen D (2010) Viscoelastic behavior of poly(acrylonitrile)/attapulgite nanocomposite solution. Colloids Surf A Physicochem Eng Asp 367(1–3):52–59. doi:10.1016/j.colsurfa.2010.06.017 CrossRefGoogle Scholar
  26. 26.
    Krishnamoorti R, Vaia RA, Giannelis EP (1996) Structure and dynamics of polymer-layered silicate nanocomposites. Chem Mater 8(8):1728–1734. doi:10.1021/cm960127g CrossRefGoogle Scholar
  27. 27.
    Lee KM, Han CD (2003) Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44(16):4573–4588. doi:10.1016/S0032-3861(03)00444-0 CrossRefGoogle Scholar
  28. 28.
    Miyoshi E, Nishinari K (1999) Non-Newtonian flow behaviour of gellan gum aqueous solutions. Colloid Polym Sci 277(8):727–734. doi:10.1007/s003960050446 CrossRefGoogle Scholar
  29. 29.
    Cosgrove T, Roberts C, Choi Y, Schmidt RG, Gordon GV, Goodwin AJ, Kretschmer A (2002) Relaxation studies of high molecular weight poly(dimethylsiloxane)s blended with polysilicate nanoparticles. Langmuir 18(26):10075–10079. doi:10.1021/la025883h CrossRefGoogle Scholar
  30. 30.
    Lecouvet B, Sclavons M, Bourbigot S, Devaux J, Bailly C (2011) Water-assisted extrusion as a novel processing route to prepare polypropylene/halloysite nanotube nanocomposites: structure and properties. Polymer 52(19):4284–4295. doi:10.1016/j.polymer.2011.07.021 CrossRefGoogle Scholar
  31. 31.
    Lecouvet B, Gutierrez JG, Sclavons M, Bailly C (2011) Structure–property relationships in polyamide 12/halloysite nanotube nanocomposites. Polym Degrad Stab 96(2):226–235. doi:10.1016/j.polymdegradstab.2010.11.006 CrossRefGoogle Scholar
  32. 32.
    Eom Y, Kim BC (2014) Solubility parameter-based analysis of polyacrylonitrile solutions in N, N-dimethyl formamide and dimethyl sulfoxide. Polymer 55(10):2570–2577. doi:10.1016/j.polymer.2014.03.047 CrossRefGoogle Scholar
  33. 33.
    Lyoo WS, Kim JH, Choi JH, Kim BC, Blackwell J (2001) Role of degree of saponification in the shear-induced molecular orientation of syndiotacticity-rich ultrahigh molecular weight poly(vinyl alcohol). Macromolecules 34(12):3982–3987. doi:10.1021/ma001338g CrossRefGoogle Scholar
  34. 34.
    Lyoo WS, Yeum JH, Kwon OW, Shin DS, Han SS, Kim BC, Jeon HY, Noh SK (2006) Rheological properties of high molecular weight (HMW) syndiotactic poly(vinyl alcohol) (PVA)/HMW atactic PVA blend solutions. J Appl Polym Sci 102(4):3934–3939. doi:10.1002/app.24223 CrossRefGoogle Scholar
  35. 35.
    Tan L, Liu S, Pan D, Pan N (2009) Gelation of polyacrylonitrile in a mixed solvent: scaling and fractal analysis. Soft Matter 5(21):4297–4304. doi:10.1039/B911635D CrossRefGoogle Scholar
  36. 36.
    Tan L, Pan D, Pan N (2009) Rheological study on thermal-induced gelation behavior of polyacrylonitrile solution. J Polym Res 16(4):341–350. doi:10.1007/s10965-008-9234-y CrossRefGoogle Scholar
  37. 37.
    McKinley GH (2005) Visco-elasto-capillary thinning and break-up of complex fluids. In. Rheology Reviews, p 1–48Google Scholar
  38. 38.
    McKinley GH, Tripathi A (2000) How to extract the Newtonian viscosity from capillary breakup measurements in a filament rheometer. J Rheol 44(3):653–670. doi:10.1122/1.551105 CrossRefGoogle Scholar
  39. 39.
    Kheirandish S, Gubaydullin I, Willenbacher N (2009) Shear and elongational flow behavior of acrylic thickener solutions. Part II: effect of gel content. Rheol Acta 48(4):397–407. doi:10.1007/s00397-008-0324-x CrossRefGoogle Scholar
  40. 40.
    Anna SL, McKinley GH (2001) Elasto-capillary thinning and breakup of model elastic liquids. J Rheol 45(1):115–138. doi:10.1122/1.1332389 CrossRefGoogle Scholar
  41. 41.
    Sridhar T, Acharya M, Nguyen DA, Bhattacharjee PK (2014) On the extensional rheology of polymer melts and concentrated solutions. Macromolecules 47(1):379–386. doi:10.1021/ma401213r CrossRefGoogle Scholar
  42. 42.
    Le Meins J-F, Moldenaers P, Mewis J (2003) Suspensions of monodisperse spheres in polymer melts: particle size effects in extensional flow. Rheol Acta 42(1–2):184–190. doi:10.1007/s00397-002-0270-y CrossRefGoogle Scholar
  43. 43.
    Takahashi T, J-i T, Koyama K (1999) Uniaxial elongational viscosity of various molten polymer composites. Polym Compos 20(3):357–366. doi:10.1002/pc.10362 CrossRefGoogle Scholar
  44. 44.
    Handge UA, Pötschke P (2007) Deformation and orientation during shear and elongation of a polycarbonate/carbon nanotubes composite in the melt. Rheol Acta 46(6):889–898. doi:10.1007/s00397-007-0179-6 CrossRefGoogle Scholar
  45. 45.
    Uematsu H, Aoki Y, Sugimoto M, Koyama K (2011) Rheology of SiO 2 /(acrylic polymer/epoxy) suspensions. III. Uniaxial elongational viscosity. Rheol Acta 50(5–6):433–439. doi:10.1007/s00397-010-0509-y CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Omid Akhlaghi
    • 1
  • Yusuf Z. Menceloglu
    • 1
  • Ozge Akbulut
    • 1
  1. 1.Faculty of Engineering and Natural SciencesSabanci UniversityIstanbulTurkey

Personalised recommendations