Advertisement

Colloid and Polymer Science

, Volume 294, Issue 10, pp 1557–1569 | Cite as

A novel radiation-induced grafting methodology to synthesize stable zerovalent iron nanoparticles at ambient atmospheric conditions

  • Sanduni Ratnayake
  • Dieter Schild
  • Edward Maczka
  • Elzbieta Jartych
  • Johannes Luetzenkirchen
  • Marek Kosmulski
  • Madhubhashini Makehelwala
  • Sujithra K. Weragoda
  • Atula Bandara
  • Ranjith Wijayawardana
  • Rohana Chandrajith
  • Srimathie P. Indrarathne
  • Rohan WeerasooriyaEmail author
Original Contribution
  • 271 Downloads

Abstract

A novel method was developed to synthesize air-stable zerovalent iron nanoparticles (hereafter nZVI) utilizing a radiation grafting technique. The nZVI were synthesized by borohydrate reduction of FeCl3 and stabilized on a radiation grafted copolymer matrix. Polyacrylic acid (PAA) grafted non-woven polyethylene/polypropylene (NWPE/PP-g-PAA) was used as the copolymer matrix and Co-60 γ-radiation was applied. The nZVI adsorbed NWPE/PP-g-PAA (hereafter nZVI-Ads-NWP) polymer composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrational spectroscopy, scanning electron microscopy (SEM), Mössbauer spectroscopy, proton titrations, and zeta potential techniques. The SEM images showed that PAA was properly grafted onto the NWPE/PP fabric during irradiation and that the nZVI were well dispersed and stabilized on the fabric surface. Vibrational spectroscopy showed supplementary evidence for the proper grafting of PAA onto the base polymer and suggested a monodentate configuration as the primary interaction between the carboxylate groups of PAA and the nZVI surface. XRD, XPS, and Mössbauer analyses revealed core zerovalent iron with a shell mainly consisting of iron oxides. The pHZPC and pHIEP values of nZVI–NaCl suspensions were 7.3. Zeta potential and surface charge data were modeled using the 1-pK Stern layer model with two dissimilar sites for electrolyte and proton binding to account for the observed charge asymmetry.

Keywords

Zerovalent iron nanoparticles (nZVI) Radiation grafting Grafted copolymer matrix Spectroscopic techniques 

Notes

Acknowledgments

Sudeera Randenigama is acknowledged for laboratory assistance. The InRC, UoP (Sri Lanka), is acknowledged for SEM facility. RW thanked the National Research Council of Sri Lanka for financial support provided under grant no. NRC-12-130. SR thanked the Sri Lanka Atomic Energy Board and Sri Lanka Gamma Centre for providing the irradiation facilities. Reviewers’ comments enhanced manuscript quality.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

396_2016_3894_MOESM1_ESM.docx (162 kb)
ESM 1 (DOCX 162 kb)
396_2016_3894_MOESM2_ESM.docx (322 kb)
ESM 2 (DOCX 321 kb)

References

  1. 1.
    Fu F, Dionysiou DD, Liu H (2014) J Hazard Mater 267:194–205CrossRefGoogle Scholar
  2. 2.
    Andreas T, Silke K, Yuri K, Aharon G (2009) Ultrason Sonochem 16:617–621CrossRefGoogle Scholar
  3. 3.
    Dror I, Jacov OM, Cortis A, Berkowitz B (2012) Appl Mater Interfaces 4:3416–3423CrossRefGoogle Scholar
  4. 4.
    Satapanajaru T, Chompuchan C, Suntornchot P, Pengthamkeerati P (2011) Desalination 266:218–230CrossRefGoogle Scholar
  5. 5.
    Poursaberi T, Hassanisadi M, Nourmohammadian F (2012) Prog Color Colorants Coat 5:35–40Google Scholar
  6. 6.
    El-Temsaha YS, Sevcub A, Bobcikova K, Cernik M, Joner EJ (2016) Chemosphere 144:2221–2228CrossRefGoogle Scholar
  7. 7.
    Yang J, Sun H (2015) Water Air Soil Pollut 226:1–15CrossRefGoogle Scholar
  8. 8.
    Yan W, Herzing AA, Kiely CJ, Zhang WX (2010) J Contam Hydrol 118:96–104CrossRefGoogle Scholar
  9. 9.
    Zhang X, Lin S, Lu XQ, Chen ZL (2010) Chem Eng J 163:243–248CrossRefGoogle Scholar
  10. 10.
    Fang Z, Quid X, Huang R, Quid X, Li M (2011) Desalination 280:224–231CrossRefGoogle Scholar
  11. 11.
    Hwang YH, Kim D–G, Shin H-S (2011) J Hazard Mater 185:1513–1521CrossRefGoogle Scholar
  12. 12.
    Khalid AME, Eljamal O, Jribi S, Matsunaga N (2016) Chem Eng J 287:367–380CrossRefGoogle Scholar
  13. 13.
    Noubactep C (2015) Water Res 85:114–123CrossRefGoogle Scholar
  14. 14.
    Sun YP, Li X, Cao J, Zhang W, Wang HP (2006) Adv Colloid Interface Sci 120:47–56CrossRefGoogle Scholar
  15. 15.
    Ponder SM, Darab JG, Mallouk TE (2000) Environ Sci Technol 34:2564–2569CrossRefGoogle Scholar
  16. 16.
    Qui X, Fang Z, Liang B, Gu F, Xu Z (2011) J Hazard Mater 193:70–81CrossRefGoogle Scholar
  17. 17.
    Stefaniuk M, Oleszczuk P, Ok YS (2016) Chem Eng J 287:618–632CrossRefGoogle Scholar
  18. 18.
    Li A, Tai C, Zhan ZS, Wang YW, Zhang QZ, Jiang GB, Hu JT (2007) Environ Sci Technol 41:6841–6846CrossRefGoogle Scholar
  19. 19.
    An Y, Li T, Jin Z, Dong M, Li Q, Wang S (2009) Sci Total Environ 407:5465–5470CrossRefGoogle Scholar
  20. 20.
    Morgada ME, Levy IK, Salomone V, Farías SS, López G, Litter MI (2009) Catal Today 143:261–268CrossRefGoogle Scholar
  21. 21.
    Machado S, Pinto SL, Grosso JP, Nouws HPA, Albergaria JT, Matos CD (2013) Sci Total Environ 445–446:1–8CrossRefGoogle Scholar
  22. 22.
    Liua HB, Chena TH, Changa DY, Chena D, Liua Y, Heb HP, Yuanb P (2012) Mater Chem Phys 133:205–211CrossRefGoogle Scholar
  23. 23.
    Oropeza S, Corea M, Gómez-Yáñez C, Cruz-Rivera JJ, Clemente MEN (2012) Mater Res Bull 47:1478–1485CrossRefGoogle Scholar
  24. 24.
    He F, Zhao DY, Liu JC, Roberts CB (2007) Ind Eng Chem Res 46:29–34CrossRefGoogle Scholar
  25. 25.
    Kassaeea MZ, Motamedia E, Mikhakb A, Rahnemaie R (2011) Chem Eng J 166:490–495CrossRefGoogle Scholar
  26. 26.
    Li L, Fan M, Brown RC, Leeuwen LV (2006) Environ Sci Technol 36:1–13CrossRefGoogle Scholar
  27. 27.
    Barsbay M, Guven O (2013) Polymer 54:4838–4848CrossRefGoogle Scholar
  28. 28.
    Clough RL (2001) Nucl Inst Methods 185:8–33CrossRefGoogle Scholar
  29. 29.
    Spinks JWT, Woods RJ (1990) Ions, excited molecules and free radicals. In: Spinks JWT, Woods RJ (eds) An introduction to radiation chemistry. Wiley, New York, pp 127–177Google Scholar
  30. 30.
    Cirtiu CM, Raychoudhury T, Ghoshal S, Moores A (2011) Colloids Surf A 390:95–104CrossRefGoogle Scholar
  31. 31.
    Allabaksh MB, Mandal BK, Kesarla MK, Kumar KS, Reddy PS (2010) J Chem Pharm Res 2:67–74Google Scholar
  32. 32.
    Yuvakkumar R, Elango V, Rajendran V, Kannan N (2011) Digest J Nano Mater Bio-Struct 6:1771–1776Google Scholar
  33. 33.
    Madhavi V, Prasad TNVKV, Reddy AVB, Reddy BR, Madhavi G (2013) Spectrochim Acta A 116:17–25CrossRefGoogle Scholar
  34. 34.
    Maczka E, Jartych E, Kosmulski M (2014) Colloids Surf A 441:326–330CrossRefGoogle Scholar
  35. 35.
    Ratnayake S, Bandara A, Wijayawardhana RL, Weerasooriya R (2015) Air stable nZVI fabrication method. PGIS Research Congress, 9–10th October, University of Peradeniya, Sri Lanka, pp 22–23Google Scholar
  36. 36.
    Seah MP, Gilmore IS, Beamson G (1998) Surf Interface Anal 26:642–649CrossRefGoogle Scholar
  37. 37.
    Westall JC (1982) FITEQL: a computer program for determination of chemical equilibrium constants from experimental data, version 2.0. Chemistry (USA) Report no 82-02. Oregon State University, Corvallis, OregonGoogle Scholar
  38. 38.
    Poeter EP, Hill MC (1999) UCODE—a computer code for universal inverse modeling. Comput Geosci 25:457–462CrossRefGoogle Scholar
  39. 39.
    Lützenkirchen J, Preočanin T, Kallay N (2008) Phys Chem Chem Phys 10:4946–4955CrossRefGoogle Scholar
  40. 40.
    Goel NK, Bhardwaj YK, Manoharan R, Kumar V, Dubey KA, Chaudhari CV, Sabharwal S (2009) e-XPRESS Polym Lett 3:268–278CrossRefGoogle Scholar
  41. 41.
    Ibrahim SM, El-Salmawi KM, El-Naggar AA (2006) J Appl Polym Sci 102:3240–3245CrossRefGoogle Scholar
  42. 42.
    Hietala S, Holmberg S, Karjalainen M, Nasman J, Paronen M, Serimaa R, Sundholm F, Vahvaselka S (1997) J Mater Chem 7:721–726CrossRefGoogle Scholar
  43. 43.
    De Ming F, Peng Y, Tian Hu C, Hong Ping H, Ai Hua Y, Kang Min C, Jian Xi Z, Dong L (2010) Chin Sci Bull 55:1092–1099CrossRefGoogle Scholar
  44. 44.
    Machala L, Zboril R, Gedanken A (2007) J Phys Chem B 111:4003–4018CrossRefGoogle Scholar
  45. 45.
    Siskova K, Tucek J, Machala L, Otyepkova E, Filip J, Safarova K, Pechousek J, Zboril R (2012) J Nanopart Res 14:1–13CrossRefGoogle Scholar
  46. 46.
    Ji Y (2014) Colloids Surf A 444:1–8CrossRefGoogle Scholar
  47. 47.
    Parks GA (1965) Chem Rev 65:177–198CrossRefGoogle Scholar
  48. 48.
    Kosmulski M (2009) Adv Colloid Interface Sci 152:14–25CrossRefGoogle Scholar
  49. 49.
    Kallay N, Orbic Z, Golic M, Matijevic E (1991) J Phys Chem 95:7028–7032CrossRefGoogle Scholar
  50. 50.
    Goldberg S, Forster HS, Heick EL (1993) Soil Sci Am J 57:704–708CrossRefGoogle Scholar
  51. 51.
    Heberling F, Thomas P, Trainor TP, Lützenkirchen J, Eng P, Denecke MA, Bosbach D (2011) J Colloid Interface Sci 354:843–857CrossRefGoogle Scholar
  52. 52.
    Lützenkirchen J (1998) Environ Sci Technol 32:3149–3154CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sanduni Ratnayake
    • 1
    • 2
  • Dieter Schild
    • 3
  • Edward Maczka
    • 4
  • Elzbieta Jartych
    • 4
  • Johannes Luetzenkirchen
    • 3
  • Marek Kosmulski
    • 4
  • Madhubhashini Makehelwala
    • 5
  • Sujithra K. Weragoda
    • 5
  • Atula Bandara
    • 6
  • Ranjith Wijayawardana
    • 7
  • Rohana Chandrajith
    • 8
  • Srimathie P. Indrarathne
    • 9
  • Rohan Weerasooriya
    • 9
    Email author
  1. 1.Post Graduate Institute of ScienceUniversity of PeradeniyaPeradeniyaSri Lanka
  2. 2.Sri Lanka Atomic Energy BoardWellampitiyaSri Lanka
  3. 3.Institute for Nuclear Waste Disposal (INE), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  4. 4.Faculty of Electrical Engineering and Computer ScienceLublin University of TechnologyLublinPoland
  5. 5.National Water Supplies and Drainage BoardKandySri Lanka
  6. 6.Department of ChemistryUniversity of PeradeniyaPeradeniyaSri Lanka
  7. 7.Department of PhysicsUniversity of PeradeniyaPeradeniyaSri Lanka
  8. 8.Department of GeologyUniversity of PeradeniyaPeradeniyaSri Lanka
  9. 9.Department of Soil ScienceUniversity of PeradeniyaPeradeniyaSri Lanka

Personalised recommendations