Advertisement

Colloid and Polymer Science

, Volume 294, Issue 7, pp 1187–1195 | Cite as

Structure and flow behavior of dilute dispersions of carbon nanotubes in polyacrylonitrile–dimethylsulfoxide solution

  • Evgeny Karpushkin
  • Nataliya Gvozdik
  • Maria Klimenko
  • Sergey K. Filippov
  • Borislav Angelov
  • Ivan Bessonov
  • Vladimir Sergeyev
Original Contribution

Abstract

Rheological behavior of carbon nanotubes (at the concentration below the percolation threshold) finely dispersed in semidilute polyacrylonitrile–dimethylsulfoxide solution has been studied as a function of the applied pre-shear stress and discussed in view of possible structural changes induced by pre-shearing of the samples. The observed effects have been ascribed to a combination of processes involving alignment and association of the macromolecules as well as orientation and association of carbon nanotubes. The effects caused by the macromolecules alignment and association are mainly observed at low concentration of the filler and at high shear stress, whereas the processes involving carbon nanotubes reorganization are mainly observed at the higher filler content and at lower pre-shear stress. The nanotubes rearrangement under shear has been probed via hyphenated rheology–synchrotron X-ray small-angle scattering measurement.

Keywords

Carbon nanotubes Alignment Aggregation Rheology Synchrotron Small-angle scattering 

Notes

Acknowledgments

We thank the ESRF (European Synchrotron Radiation Facility, Grenoble, France) for granting SAXS beam time (project SC-4167). S.F. acknowledges the Czech Science Foundation (Grant No. 15-10527 J). S.F. also acknowledges the project INGO LG13058. E.K. acknowledges partial financial support from the Russian Foundation for Basic Research (project no. 14-03-31715_mol_a). I.B. acknowledges funding from the Ministry of Education and Science of the Russian Federation (no. 14.577.21.0095 from 25th August 2014); unique identifier RFMEFI57714X0095. Dr. T. Narayanan and Dr. J. Möller are acknowledged for the kind support at the ESRF ID02 beamline.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

396_2016_3878_MOESM1_ESM.docx (364 kb)
Fig. S1 (DOCX 363 kb)
396_2016_3878_MOESM2_ESM.docx (36 kb)
Fig. S2 (DOCX 36 kb)
396_2016_3878_MOESM3_ESM.docx (77 kb)
Fig. S3 (DOCX 77 kb)
396_2016_3878_MOESM4_ESM.docx (43 kb)
Fig. S4 (DOCX 43 kb)
396_2016_3878_MOESM5_ESM.docx (119 kb)
Fig. S5 (DOCX 118 kb)
396_2016_3878_MOESM6_ESM.docx (683 kb)
Fig. S6 (DOCX 682 kb)

References

  1. 1.
    Bonn D, Meunier J, Greffier O, Al-Kahwaji A, Kellay H (1998) Bistability in non-Newtonian flow: rheology of lyotropic liquid crystals. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Top 58:2115–2118. doi: 10.1103/PhysRevE.58.2115 Google Scholar
  2. 2.
    Olmsted PD, Lu C-YD (1999) Phase coexistence of complex fluids in shear flow. Faraday Discuss 112:183–194. doi: 10.1039/A900245F CrossRefGoogle Scholar
  3. 3.
    Poslinski AJ, Ryan ME, Gupta RK, Seshadri SG, Frechette FJ (1988) Rheological behavior of filled polymeric systems I. Yield stress and shear-thinning effects. J Rheol 32:703–735. doi: 10.1122/1.549987 CrossRefGoogle Scholar
  4. 4.
    Litchfield DW, Baird DJ (2006) The rheology of high aspect ratio nanoparticle filled liquids. Rheol Rev 1–60Google Scholar
  5. 5.
    Weisenberger MC, Grulke EA, Jacques D, Rantell T, Andrews R (2003) Enhanced mechanical properties of polyacrylonitrile/multiwall carbon nanotube composite fibers. J Nanosci Nanotechnol 3:535–539. doi: 10.1166/jnn.2003.239 CrossRefGoogle Scholar
  6. 6.
    Hobbie EK (2010) Shear rheology of carbon nanotube suspensions. Rheol Acta 49:323–334. doi: 10.1007/s00397-009-0422-4 CrossRefGoogle Scholar
  7. 7.
    Richter S, Saphiannikova M, Jehnichen D, Bierdel M, Heinrich G (2009) Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts. Express Polym Lett 3:753–768. doi: 10.3144/expresspolymlett.2009.94 CrossRefGoogle Scholar
  8. 8.
    Lin-Gibson S, Pathak JA, Grulke EA, Wang H, Hobbie EK (2004) Elastic flow instability in nanotube suspensions. Phys Rev Lett 92:048302-1–048302-4. doi: 10.1103/PhysRevLett.92.048302 Google Scholar
  9. 9.
    Semakov AV, Kulichikhin VG, Tereshin AK, Antonov SV, Malkin AYA (2015) On the nature of phase separation of polymer solutions at high extension rates. J Polym Sci B Polym Phys 53:559–565. doi: 10.1002/polb.23668 CrossRefGoogle Scholar
  10. 10.
    Pujari S, Rahatekar S, Gilman JW, Koziol KK, Windle AH, Burghardt WR (2011) Shear-induced anisotropy of concentrated multiwalled carbon nanotube suspensions using x-ray scattering. J Rheol 55:1033–1058. doi: 10.1122/1.3609854 CrossRefGoogle Scholar
  11. 11.
    Wang W, Murthy NS, Chae HG, Kumar S (2009) Small-angle X-ray scattering investigation of carbon nanotube-reinforced polyacrylonitrile fibers during deformation. J Polym Sci B Polym Phys 47:2394–2409. doi: 10.1002/polb.21836 CrossRefGoogle Scholar
  12. 12.
    Karpushkin EA, Berkovich AK, Artemov MV, Sergeyev VG (2014) Rheological properties of polyacrylonitrile solutions containing highly dispersed carbon nanotubes. Polym Sci Ser A 56:681–686. doi: 10.1134/S0965545X14050083 CrossRefGoogle Scholar
  13. 13.
    Karpushkin E, Lapshina M, Sergeyev V (2015) Shear-induced structure evolution of carbon nanotubes dispersions in polyacrylonitrile–dimethylsulfoxide solution. AIP Conf Proc 1662:040004. doi: 10.1063/1.4918892 CrossRefGoogle Scholar
  14. 14.
    Karpushkin E, Berkovich A, Sergeyev V (2015) Stabilization of multi-walled carbon nanotubes aqueous dispersion with poly-N-vinylpyrrolidone via polymer-wrapping. Macromol Symp 348:63–67. doi: 10.1002/masy.201400162 CrossRefGoogle Scholar
  15. 15.
    Udra SA, Mashchenko VI, Kazarin LA, Gerasimov VI (2008) Gelation in solutions of high-molecular-mass polyacrylonitrile under shear deformation. Polym Sci Ser A 50:1233–1237. doi: 10.1134/S0965545X08120067 CrossRefGoogle Scholar
  16. 16.
    Vshivkov SA, Kulichikhin SG, Rusinova EV (1998) Phase transitions in polymer solutions induced by mechanical fields. Russ Chem Rev 67:233–243. doi: 10.1070/RC1998v067n03ABEH000319 CrossRefGoogle Scholar
  17. 17.
    Zimm BH (1945) Molecular theory of the scattering of light in fluids. J Chem Phys 13:141–145. doi: 10.1063/1.1724013 CrossRefGoogle Scholar
  18. 18.
    Zimm BH (1948) The scattering of light and the radial distribution function of high polymer solutions. J Chem Phys 16:1093–1099. doi: 10.1063/1.1746738 CrossRefGoogle Scholar
  19. 19.
    Angelov B, Angelova A, Filippov SK, Karlsson G, Terrill N, Lesieur S, Štěpánek P (2011) Topology and internal structure of PEGylated lipid nanocarriers for neuronal transfection: synchrotron radiation SAXS and cryo-TEM studies. Soft Matter 7:9714–9720. doi: 10.1039/C1SM06447A CrossRefGoogle Scholar
  20. 20.
    Sorensen CM (2001) Light scattering by fractal aggregates: a review. Aerosol Sci Technol 35:648–687. doi: 10.1080/02786820117868 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Evgeny Karpushkin
    • 1
  • Nataliya Gvozdik
    • 1
    • 2
  • Maria Klimenko
    • 2
  • Sergey K. Filippov
    • 3
  • Borislav Angelov
    • 3
  • Ivan Bessonov
    • 4
  • Vladimir Sergeyev
    • 1
  1. 1.Department of ChemistryLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Materials ScienceLomonosov Moscow State UniversityMoscowRussia
  3. 3.Institute of Macromolecular Chemistry AS CRPrague 6Czech Republic
  4. 4.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations