Colloid and Polymer Science

, Volume 294, Issue 7, pp 1097–1106 | Cite as

Effect of polymer conformation on polymer-surfactant interaction in salt-free water

  • Ahmed EL Aferni
  • Moez Guettari
  • Tahar Tajouri
Original Contribution


The aim of the present paper was to study the interaction between polyvinylpyrrolidone (PVP) and sodium bis(2-ethylhexyl) sulfoccinate (AOT), as an anionic surfactant, over a temperature range of 25–60 °C by viscosity and electrical conductivity measurements. A coil-to-globule transition of PVP in water was observed. The critical micellar concentration (CMC) was determined by conductivity at 25 and 50 °C. The formation of the complex PVP-AOT in water was studied by conductivity and viscometry at 25 and 50 °C, where the polymer chain adopts respectively coil and globule conformations, and the obtained curves show two break points corresponding to the critical aggregation concentration (CAC) and the polymer saturation point (PSP). The viscometric behavior of PVP-AOT system was studied by using three selected AOT concentrations: CAOT,1, CAOT,2, and CAOT,3 with CAOT,1 < CAC < CAOT,2 < PSP < CAOT,3. For CAOT,1, the system behaves as a neutral polymer. A pseudo-polyelectrolyte behavior was observed for the surfactant concentration (CAOT,2). Above the PSP, and for the CAOT,3 concentration, a screening effect appears due to the increase of the free AOT micelles concentrations. In presence of surfactants, the polymer chains swell especially when the PVP is in globular state.


Polymer Surfactant Complex Viscosity Conductivity 



The authors gratefully acknowledge financial support from the Tunisian Ministry of Education, Research and Technology.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. 1.
    Sharma T, Suresh Kumar G, Hyun Chon B, Sangwai J (2014) Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system. Korea-Australia Rheology Journal 26:377–387. doi: 10.1007/s13367-014-0043-z CrossRefGoogle Scholar
  2. 2.
    Malcher T, Gzyl-Malcher B (2012) Influence of polymer–surfactant aggregates on fluid flow. Bioelectrochemistry 87:42–49. doi: 10.1016/j.bioelechem.2012.01.011 CrossRefGoogle Scholar
  3. 3.
    Olajire A (2014) Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 77:963–982. doi: 10.1016/ CrossRefGoogle Scholar
  4. 4.
    Goddard ED (1986) Polymer-surfactant interaction. Part 1: uncharged water-soluble polymers and charged surfactants. Colloids and Surfaces 19:255–300. doi: 10.1016/0166-6622(86)80340-7 CrossRefGoogle Scholar
  5. 5.
    Hansson P, Lindman B (1996) Surfactant-polymer interactions. Curr Opin Colloid Interface Sci 1:604–613. doi: 10.1016/S1359-0294(96)80098-7 CrossRefGoogle Scholar
  6. 6.
    Chari K, Lenhart WC (1990) Effect of polyvinylpyrrolidone on the self-assembly of model hydrocarbon amphiphiles. J Colloid Interface Sci 137:204–216. doi: 10.1016/0021-9797(90)90057-U CrossRefGoogle Scholar
  7. 7.
    Dias RS, Magno LM, et al. (2008) Interaction between DNA and cationic surfactants: effect of DNA conformation and surfactant headgroup. J. Phys. Chem. B 112:14446–14452. doi: 10.1021/jp8027935 CrossRefGoogle Scholar
  8. 8.
    Wang C, Tam KC (2002) New insights on the interaction mechanism within oppositely charged polymer/surfactant systems. Langmuir 18:6484–6490. doi: 10.1021/la025573z CrossRefGoogle Scholar
  9. 9.
    Holmberg K, Jonsson B, Kronberg B, Lindman B (2002) Surfactants and polymers in aqueous solution. John Wiley & Sons, Ltd, EnglandCrossRefGoogle Scholar
  10. 10.
    Wang G, Olofsson G (1995) Ethyl(hydroxyethy1)cellulose and ionic surfactants in dilute solution calorimetric and viscosity study of the interaction with SDS and some cationic surfactants. J Phys Chem 99:5588–5596. doi: 10.1021/j100015a049 CrossRefGoogle Scholar
  11. 11.
    Wang G, Olofsson G (1998) Titration calorimetric study of the interaction between ionic surfactants and uncharged polymers in aqueous solution. J Phys Chem B 102:9276–9283. doi: 10.1021/jp9823446 CrossRefGoogle Scholar
  12. 12.
    Dhara D, Shah DO (2001) Stability of sodium dodecyl sulfate micelles in the presence of a range of water-soluble polymers: a pressure-jump study. J. Phys. Chem. B 105:7133–7138. doi: 10.1021/jp003072l CrossRefGoogle Scholar
  13. 13.
    Hayakawa K, Kwak J C (1991) Cationic surfactants: physical chemistry. Rubingh DN, Holland PM (eds), New York, p189Google Scholar
  14. 14.
    Saito S (1967) Solubilization properties of polymer-surfactant complexes. J Colloid Interface Sci 24:227–234. doi: 10.1016/0021-9797(67)90225-1 CrossRefGoogle Scholar
  15. 15.
    Jones MN (1967) The interaction of sodium dodecyl sulfate with polyethylene oxide. J Colloid Interface Sci 23: 36–42. doi: 10.1016/0021-9797(67)90082-3
  16. 16.
    Cabane B, Duplessix R (1982) Organization of surfactant micelles adsorbed on a polymer molecule in water: a neutron scattering study. J Phys France 43:1529–1542. doi: 10.1051/jphys:0198200430100152900 CrossRefGoogle Scholar
  17. 17.
    Winnik MA, Bystryak SM, Chassenieux C (2000) Study of interaction of poly(ethylene imine) with sodium dodecyl sulfate in aqueous solution by light scattering, conductometry, NMR, and microcalorimetry. Langmuir 16:4495–4510. doi: 10.1021/la991553u CrossRefGoogle Scholar
  18. 18.
    Minatti E, Zanette D (1996) Salt effects on the interaction of poly(ethylene oxide) and sodium dodecyl sulfate measured by conductivity. Colloids Surfaces A: Physicochem. Eng. Aspects 113:237–246. doi: 10.1016/0927-7757(96)03573-X CrossRefGoogle Scholar
  19. 19.
    Meewes M, Ricka J, De silva M (1991) Coil-globule transition of poly (N-isopropylacrylamide) a study of surfactant effects by light scattering. Macromolecules 24: 5811–5816. doi: 10.1021/ma00021a014
  20. 20.
    Da Silva RC, Loh W, Olofsson G (2004) Calorimetric investigation of temperature effect on the interaction between poly (ethylene oxide) and sodium dodecylsulfate in water. Thermochim Acta 417:295–300. doi: 10.1016/j.tca.2003.07.025 CrossRefGoogle Scholar
  21. 21.
    Sovilj VJ, Petrovic LB (2005) Influence of molecular characteristics of nonionic cellulose ethers on their interaction with ionic surfactant investigated by conductometry. Colloid PolymSci 284:334–339. doi: 10.1007/s00396-005-1376-4 CrossRefGoogle Scholar
  22. 22.
    Prasad M, Moulik S P (2006) Interaction between sodium dodecyl sulfate (SDS) and polyvinylpyrrolidone (PVP) investigated with forward and reverse component addition protocols employing tensiometric, conductometric, microcalorimetric, electrokinetic, and DLS techniques.ColloidPolymSci 284: 871–87. doi:10.1007/s00396–005–1453-8Google Scholar
  23. 23.
    Jiang1 W H, Han S J (2000) Viscosity of nonionic polymer/anionic surfactant complexes in water. J Colloid Interface Sci 229 :1–5. doi: 10.1006/jcis.2000.6971
  24. 24.
    Li F, Li GZ (1998) Studies on the interactions between anionic surfactants and polyvinylpyrrolidone surface tension measurement,13C NMR and ESR. Colloid Polym Sci 276:1–10. doi: 10.1007/s003960050201 CrossRefGoogle Scholar
  25. 25.
    Chatterjee A, Moulik SP, Majhi PR, Sanyal SK (2002) Studies on surfactant-biopolymer interaction. I. Microcalorimetric investigation on the interaction of cetyltrimethylammonium bromide (CTAB) and sodium dodecylsulfate (SDS) with gelatin (Gn), lysozyme (Lz) and deoxyribonucleic acid (DNA). Biophys Chem 98:313–327. doi: 10.1016/S0301-4622(02)00107-2 CrossRefGoogle Scholar
  26. 26.
    Dai S, Tam KC (2005) Laser light scattering and isothermal titration calorimetric studies of poly(ethylene oxide) aqueous solution in presence of sodium dodecyl sulfate. J Colloid Interface Sci 292:79–85. doi: 10.1016/j.jcis.2005.05.079 CrossRefGoogle Scholar
  27. 27.
    Bloor DM, Holzwarth JF, Wyn-Jones E (1995) Polymer/surfactant interactions the use of isothermal titration calorimetry and emf measurements in the sodium dodecyl sulfate/poly(N-vinylpyrrolidone) system. Langmuir 11:2312–2313. doi: 10.1021/la00006a074 CrossRefGoogle Scholar
  28. 28.
    Dai S, Tam KC (2006) Isothermal titration calorimetric studies on the interaction between sodium dodecyl sulfate and polyethylene glycols of different molecular weights and chain architectures. Colloids and Surfaces A: Physicochem. Eng. Aspects 289:200–206. doi: 10.1016/j.colsurfa.2006.04.035 CrossRefGoogle Scholar
  29. 29.
    Guettari M, Ben Naceur I, Kassab G, Ponton A, Tajouri T (2013) Temperature and concentration induced complex behavior in ternary microemulsion. Appl Rheol 23:44966. doi: 10.3933/ApplRheol-23-44966 Google Scholar
  30. 30.
    Ben Naceur I, Guettari M, Kassab G, Tajouri T (2012) Simple-complex fluid transition in microemulsions. Journal of Macromolecular Science, Part B: Physics 51:2171–2182. doi: 10.1080/00222348.2012.665781
  31. 31.
    Guettari M, Ben Naceur I, Kassab G, Tajouri T (2016) Temperature effect on the inter-micellar collision and maximum packaging volume fraction in water/AOT/isooctane micro-emulsions. J Chem Thermodynamics 95:183–189. doi: 10.1016/j.jct.2015.12.011 CrossRefGoogle Scholar
  32. 32.
    Guettari M, Gomati R, Gharbi A (2010) Effect of temperature on cononsolvency of polyvinylpyrrolidone in water/methanol mixture. Journal of Macromolecular Science, Part B: Physics 49:552. doi: 10.1080/00222341003595378 CrossRefGoogle Scholar
  33. 33.
    Guettari M, Ashi A, Gomati R, Garbi A (2008) Structural transition of a homopolymer in solvents mixture. Mater Sci Eng C 28:811–815. doi: 10.1016/j.msec.2007.10.025 CrossRefGoogle Scholar
  34. 34.
    Guettari M, Gomati R, Gharbi A (2012) Determination of the flory exponent by study of steady shear viscosity. Journal of Macromolecular Science. Part B: Physics, 51:153–163. doi: 10.1080/00222348.2011.564087
  35. 35.
    Huggins M (1942) The viscosity of dilute solutions of long-chain molecules. J Am Chem Soc 64:2716–2718. doi: 10.1021/ja01263a056 CrossRefGoogle Scholar
  36. 36.
    Khan Y, Samanta A, Ojha K, Mandal A (2008) Interaction between aqueous solutions of polymer and surfactant and its effect on physicochemical properties. Asia Pac J Chem Eng 3:579–585. doi: 10.1002/apj.212 CrossRefGoogle Scholar
  37. 37.
    Moulik S P, Mukherjee K (1996) On the versatile of Aerosol-OT(AOT): its physicochemical and surface chemical behaviours and uses. Proc.indian natn.Sci.Acad 62: 215–232.Google Scholar
  38. 38.
    Molyneux P, Ahmed G S (1973) The interaction of water-soluble α, ω-disubstituted alkanes (bolaform compounds) with polyvinylpyrrolidone in aqueous solution. Kolloid-Z.u. Z. Polymere 251: 310–328. doi: 10.1007/BF01498730
  39. 39.
    Dragan S, Ghimici L (2001) Viscometric behaviour of some hydrophobically modified cationic polyelectrolytes. Polymer 42:2887–2891. doi: 10.1016/S0032-3861(00)00690-X CrossRefGoogle Scholar
  40. 40.
    Fuoss R (1951) Polyelectrolytes. Discuss. Faraday Soc 11:125–134. doi: 10.1039/DF9511100121 CrossRefGoogle Scholar
  41. 41.
    Wolff C (1978) Viscosité des solutions de Polyélectrolytes. Journal de Physique, Colloque 39, pp169–174Google Scholar
  42. 42.
    Ahmad N, Saeed A, ahad K, khan S (1994) Effect of the counterion charge on the viscosity of dilute polyelectrolyte solutions. Jour.Chem.Soc.Pak 16:236–239Google Scholar
  43. 43.
    Minatti E, Norwood D, F Reed W (1998). Surfactant/polymer assemblies 2. Polyelectrolyte Properties Macromolecules 31:2966–2971. doi: 10.1021/ma971319f

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ahmed EL Aferni
    • 1
    • 2
  • Moez Guettari
    • 1
  • Tahar Tajouri
    • 1
  1. 1.Preparatory Institute for Engineering Studies of Tunis, NMR in Polymers and Composites LaboratoryUniversity of TunisTunisTunisia
  2. 2.Faculty of Sciences of BizerteUniversity of CarthageBizerteTunisia

Personalised recommendations