Advertisement

Colloid and Polymer Science

, Volume 294, Issue 3, pp 555–563 | Cite as

Conformational study on the thermal transition of chitosan-g-poly(N-vinylcaprolactam) in aqueous solution

  • Daniel Fernández-Quiroz
  • Álvaro González-Gómez
  • Jaime Lizardi-Mendoza
  • Blanca Vázquez-Lasa
  • Francisco M. Goycoolea
  • Julio San Román
  • Waldo M. Argüelles-Monal
Original Contribution

Abstract

Conformational changes of the thermal transitions of chitosan-graft-poly(N-vinylcaprolactam) copolymers in aqueous solution were studied by varying of the length of the grafted poly(N-vinylcaprolactam) (PVCL) chains, as well as the ionic strength and the pH of the solution. The conformational properties of the copolymer were monitored by means of dynamic light scattering and ζ-potential measurements. A series of copolymers with defined molecular architecture were synthesized. Obtained results point out that hydrophobic hydration plays a crucial role on the solubility of this copolymer at neutral and slightly alkaline solutions. The evolution of the size of macromolecular aggregates indicates that, in the coil state, there is a monomodal distribution, passing through a bimodal distribution in the pre-transition region, just before the phase separation. The role of the charge of the copolymers on the cooperative transition is also analyzed. The phase transition of these amphiphilic copolymers shows a strong dependence on the ionic strength of the solution.

Keywords

Chitosan-g-poly(N-vinylcaprolactam) Conformational transition Dynamic light scattering ζ-potential Ionic strength and pH effect 

Notes

Acknowledgments

D. F.-Q. acknowledges CONACyT for his scholarship for PhD studies (325951) and to the Institute of Polymer Science and Technology (ICTP) of the Spanish National Research Council (CSIC) in Madrid, Spain, especially the Biomaterials Group. Authors thank CIBER-BBN for financial support.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Dubovik AS, Makhaeva EE, Grinberg VY, Khokhlov AR (2005) Energetics of cooperative transitions of N-vinylcaprolactam polymers in aqueous solutions. Macromol Chem Phys 206:915–928. doi: 10.1002/macp.200400554 CrossRefGoogle Scholar
  2. 2.
    Hoogenboom R (2014) Temperature-responsive polymers: properties, synthesis and applications. In: Aguilar MR, San Román J (eds) Smart polymers and their applications. Elsevier, Cambridge, pp 15–44CrossRefGoogle Scholar
  3. 3.
    Recillas M, Silva LL, Peniche C et al (2009) Thermoresponsive behavior of chitosan-g-N-isopropylacrylamide copolymer solutions. Biomacromolecules 10:1633–1641. doi: 10.1021/bm9002317 CrossRefGoogle Scholar
  4. 4.
    Frank HS, Evans MW (1945) Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J Chem Phys 13:507–532. doi: 10.1063/1.1723985 CrossRefGoogle Scholar
  5. 5.
    Shinoda K, Fujihira M (1968) The analysis of the solubility of hydrocarbons in water. Bull Chem Soc Jpn 41:2612–2615. doi: 10.1246/bcsj.41.2612 CrossRefGoogle Scholar
  6. 6.
    Costas M, Patterson D (1985) Heat capacities of water + organic-solvent mixtures. J Chem Soc Faraday Trans 1 Phys Chem Condens Phases 81:2381–2398. doi: 10.1039/f19858102381 Google Scholar
  7. 7.
    Tager AA, Safronov AP, Sharina SV, Galaev IY (1993) Thermodynamic study of poly(N-vinyl caprolactam) hydration at temperatures close to lower critical solution temperature. Colloid Polym Sci 271:868–872. doi: 10.1007/BF00652769
  8. 8.
    Kirsh YE (1993) Water-soluble poly(N-vinylamidess): microstructure, solvation, conformational state and complex formation in aqueous solutions. Prog Polym Sci 18:519–542. doi: 10.1016/0079-6700(93)90016-6 CrossRefGoogle Scholar
  9. 9.
    Laukkanen A, Valtola L, Winnik FM, Tenhu H (2004) Formation of colloidally stable phase separated poly(N-vinylcaprolactam) in water: a study by dynamic light scattering, microcalorimetry, and pressure perturbation calorimetry. Macromolecules 37:2268–2274. doi: 10.1021/ma035124l CrossRefGoogle Scholar
  10. 10.
    Meeussen F, Nies E, Berghmans H et al (2000) Phase behaviour of poly(N-vinyl caprolactam) in water. Polymer 41:8597–8602. doi: 10.1016/S0032-3861(00)00255-X CrossRefGoogle Scholar
  11. 11.
    Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly( N -vinylpyrrolidone) in water. Macromolecules 35:217–222. doi: 10.1021/ma011034+ CrossRefGoogle Scholar
  12. 12.
    Makhaeva E, Tenhu H, Khokhlov A (2000) Behaviour of poly(N-vinylcaprolactam) macromolecules in the presence of organic compounds in aqueous solution. Polymer 41:9139–9145. doi: 10.1016/S0032-3861(00)00258-5 CrossRefGoogle Scholar
  13. 13.
    Mikheeva LM, Grinberg NV, Mashkevich AY et al (1997) Microcalorimetric study of thermal cooperative transitions in poly(N-vinylcaprolactam) hydrogels. Macromolecules 30:2693–2699. doi: 10.1021/ma9615112 CrossRefGoogle Scholar
  14. 14.
    Fernández-Quiroz D, González-Gómez Á, Lizardi-Mendoza J et al (2015) Effect of the molecular architecture on the thermosensitive properties of chitosan-g-poly(N-vinylcaprolactam). Carbohydr Polym 134:92–101. doi: 10.1016/j.carbpol.2015.07.069 CrossRefGoogle Scholar
  15. 15.
    Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O (1991) Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. Spectroscopy. Carbohydr Res 211:17–23CrossRefGoogle Scholar
  16. 16.
    Verbrugghe S, Laukkanen A, Aseyev V et al (2003) Light scattering and microcalorimetry studies on aqueous solutions of thermo-responsive PVCL-g-PEO copolymers. Polymer 44:6807–14. doi: 10.1016/j.polymer.2003.07.003 CrossRefGoogle Scholar
  17. 17.
    Philippova OE, Korchagina EV, Volkov EV et al (2012) Aggregation of some water-soluble derivatives of chitin in aqueous solutions: role of the degree of acetylation and effect of hydrogen bond breaker. Carbohydr Polym 87:687–694. doi: 10.1016/j.carbpol.2011.08.043 CrossRefGoogle Scholar
  18. 18.
    Korchagina EV, Philippova OE (2010) Multichain aggregates in dilute solutions of associating polyelectrolyte keeping a constant size at the increase in the chain length of individual macromolecules. Biomacromolecules 11:3457–3466. doi: 10.1021/bm100990u
  19. 19.
    Novoa-Carballal R, Riguera R, Fernandez-Megia E (2013) Chitosan hydrophobic domains are favoured at low degree of acetylation and molecular weight. Polymer 54:2081–2087. doi: 10.1016/j.polymer.2013.02.024 CrossRefGoogle Scholar
  20. 20.
    Buhler E, Rinaudo M (2000) Structural and dynamical properties of semirigid polyelectrolyte solutions: a light-scattering study. Macromolecules 33(6):2098–2106. doi: 10.1021/ma991309 CrossRefGoogle Scholar
  21. 21.
    Pa J, Yu TL (2001) Light scattering study of chitosan in acetic acid aqueous solutions. Macromol Chem Phys 202:985–991Google Scholar
  22. 22.
    Argüelles-Monal W, Goycoolea FM, Lizardi J et al (2002) Chitin and chitosan in gel network systems. In: Bohidar HB, Dubin P, Osada Y (eds) Polymer Gels, ACS Symposium Series, pp 102–121. doi: 10.1021/bk-2002-0833.ch007
  23. 23.
    Vorob’ev MM, Burova TV, Grinberg NV et al (2010) Hydration characterization of N-vinylcaprolactam polymers by absorption millimeter-wave measurements. Colloid Polym Sci 288:1457–1463. doi: 10.1007/s00396-010-2282-y CrossRefGoogle Scholar
  24. 24.
    Dimitrov I, Trzebicka B, Müller AHE et al (2007) Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 32:1275–1343. doi: 10.1016/j.progpolymsci.2007.07.001 CrossRefGoogle Scholar
  25. 25.
    Potemkin II, Vasilevskaya VV, Khokhlov AR (1999) Associating polyelectrolytes: Finite size cluster stabilization versus physical gel formation. J Chem Phys 111:2809. doi: 10.1063/1.479558 CrossRefGoogle Scholar
  26. 26.
    Makhaeva EE, Tenhu H, Khokhlov AR (2002) Behavior of poly(N-vinylcaprolactam-co-methacrylic acid) macromolecules in aqueous solution: interplay between coulombic and hydrophobic interaction. Macromolecules 35:1870–1876. doi: 10.1021/ma0105789 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel Fernández-Quiroz
    • 1
  • Álvaro González-Gómez
    • 2
    • 3
  • Jaime Lizardi-Mendoza
    • 4
  • Blanca Vázquez-Lasa
    • 2
    • 3
  • Francisco M. Goycoolea
    • 4
    • 5
  • Julio San Román
    • 2
  • Waldo M. Argüelles-Monal
    • 1
  1. 1.CIAD – GuaymasGuaymasMexico
  2. 2.ICTP-CSICMadridSpain
  3. 3.CIBER, Health Institute Carlos IIIMadridSpain
  4. 4.CIAD-HermosilloHermosilloMexico
  5. 5.Westfälische Wilhelms Universität Münster; IBBPMünsterGermany

Personalised recommendations