Advertisement

Colloid and Polymer Science

, Volume 294, Issue 1, pp 1–12 | Cite as

Preparation of non-aqueous Pickering emulsions using anisotropic block copolymer nanoparticles

  • S. L. Rizzelli
  • E. R. Jones
  • K. L. Thompson
  • S. P. Armes
Invited Article – Award Contribution

Abstract

In this work, we show that amphiphilic diblock copolymer worms prepared via alcoholic RAFT dispersion polymerization can be used to stabilize non-aqueous Pickering emulsions. A previously reported synthesis protocol based on polymerization-induced self-assembly (PISA) was modified to enable the preparation of poly(2-(dimethylamino)ethyl methacrylate)-poly(benzyl methacrylate) (PDMA-PBzMA) worm-like particles directly in methanol at relatively high solids. A dilute dispersion of these highly anisotropic nanoparticles was then homogenized with sunflower oil to produce sunflower oil-in-methanol emulsions. The mean droplet diameter ranged from 9 to 104 μm, depending on the nanoparticle concentration and the stirring rate used for homogenization. The sunflower oil content was increased systematically, with stable emulsions being obtained up to a volume fraction of 0.60. In all cases, the sunflower oil droplets gradually increase in size on ageing for up to 4 days. However, stable emulsions were obtained after this time period, with no further change in the mean droplet diameter for at least 2 months on standing at ambient temperature. Turbidimetry studies of the continuous phase after sedimentation of the relatively dense emulsion droplets indicated that the initial adsorption efficiency of the PDMA-PBzMA worms is very high, but this is reduced significantly as the droplet diameter gradually increases during ageing. There is a concomitant increase in fractional surface coverage over the same time period, suggesting that the increase in droplet diameter is the result of limited coalescence, rather than an Ostwald ripening mechanism.

Keywords

RAFT polymerization Self-assembly Pickering emulsions Non-aqueous emulsions Block copolymers Nanoparticles 

Notes

Acknowledgments

We thank DSM Advanced Surfaces (Geleen, The Netherlands) and EPSRC for a CASE PhD studentship for ERJ. SPA thanks EPSRC (platform grant EP/J007846/1) for post-doctoral support of KLT and also acknowledges partial project funding from Stichting Innovatie Alliantie (Foundation Innovation Alliance).

Supplementary material

396_2015_3785_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1.21 MB)

References

  1. 1.
    Ramsden W (1903) Separation of solids in the surface-layers of solutions and ‘Suspensions’ (observations on surface-membranes, bubbles, emulsions, and mechanical coagulation). Preliminary account. Proc R Soc Lond 72(479):156–164. doi: 10.1098/rspl.1903.0034 CrossRefGoogle Scholar
  2. 2.
    Pickering SU (1907) Emulsions. J Chem Soc 91:2001–2021. doi: 10.1039/ct9079102001 CrossRefGoogle Scholar
  3. 3.
    Levine S, Bowen BD, Partridge SJ (1989) Stabilization of emulsions by fine particles. 1. Partitioning effect of particles between continuous phase and oil-water interface. Colloids Surf 38(4):325–343. doi: 10.1016/0166-6622(89)80271-9 CrossRefGoogle Scholar
  4. 4.
    Binks BP, Lumsdon SO (1999) Stability of oil-in-water emulsions stabilised by silica particles. PCCP 1(12):3007–3016. doi: 10.1039/a902209k CrossRefGoogle Scholar
  5. 5.
    Binks BP, Lumsdon SO (2000) Effects of oil type and aqueous phase composition on oil-water mixtures containing particles of intermediate hydrophobicity. PCCP 2(13):2959–2967. doi: 10.1039/b002582h CrossRefGoogle Scholar
  6. 6.
    Binks BP, Whitby CP (2004) Silica particle-stabilized emulsions of silicone oil and water: aspects of emulsification. Langmuir 20(4):1130–1137. doi: 10.1021/la0303557 CrossRefGoogle Scholar
  7. 7.
    Gautier F, Destribats M, Perrier-Cornet R, Dechezelles JF, Giermanska J, Heroguez V, Ravaine S, Leal-Calderon F, Schmitt V (2007) Pickering emulsions with stimulable particles: from highly- to weakly-covered interfaces. PCCP 9(48):6455–6462. doi: 10.1039/b710226g CrossRefGoogle Scholar
  8. 8.
    Lagaly G, Reese M, Abend S (1999) Smectites as colloidal stabilizers of emulsions—I. Preparation and properties of emulsions with smectites and nonionic surfactants. Appl Clay Sci 14(1-3):83–103. doi: 10.1016/s0169-1317(98)00051-9 CrossRefGoogle Scholar
  9. 9.
    Binks BP, Clint JH, Whitby CP (2005) Rheological behavior of water-in-oil emulsions stabilized by hydrophobic bentonite particles. Langmuir 21(12):5307–5316. doi: 10.1021/la050255w CrossRefGoogle Scholar
  10. 10.
    Bon SAF, Colver PJ (2007) Pickering miniemulsion polymerization using Laponite clay as a stabilizer. Langmuir 23(16):8316–8322. doi: 10.1021/la701150q CrossRefGoogle Scholar
  11. 11.
    Guillot S, Bergaya F, de Azevedo C, Warmont F, Tranchant JF (2009) Internally structured Pickering emulsions stabilized by clay mineral particles. J Colloid Interface Sci 333(2):563–569. doi: 10.1016/j.jcis.2009.01.026 CrossRefGoogle Scholar
  12. 12.
    Cui YN, Threlfall M, van Duijneveldt JS (2011) Optimizing organoclay stabilized Pickering emulsions. J Colloid Interface Sci 356(2):665–671. doi: 10.1016/j.jcis.2011.01.046 CrossRefGoogle Scholar
  13. 13.
    Velev OD, Furusawa K, Nagayama K (1996) Assembly of latex particles by using emulsion droplets as templates. 1. Microstructured hollow spheres. Langmuir 12(10):2374–2384. doi: 10.1021/la9506786 CrossRefGoogle Scholar
  14. 14.
    Binks BP, Lumsdon SO (2001) Pickering emulsions stabilized by monodisperse latex particles: effects of particle size. Langmuir 17(15):4540–4547. doi: 10.1021/la0103822 CrossRefGoogle Scholar
  15. 15.
    Laib S, Routh AF (2008) Fabrication of colloidosomes at low temperature for the encapsulation of thermally sensitive compounds. J Colloid Interface Sci 317(1):121–129. doi: 10.1016/j.jcis.2007.09.019 CrossRefGoogle Scholar
  16. 16.
    Walsh A, Thompson KL, Armes SP, York DW (2010) Polyamine-functional sterically stabilized latexes for covalently cross-linkable colloidosomes. Langmuir 26(23):18039–18048. doi: 10.1021/la103804y CrossRefGoogle Scholar
  17. 17.
    Thompson KL, Armes SP (2010) From well-defined macromonomers to sterically-stabilised latexes to covalently cross-linkable colloidosomes: exerting control over multiple length scales. Chem Commun 46(29):5274–5276. doi: 10.1039/c0cc01362e CrossRefGoogle Scholar
  18. 18.
    Atanase LI, Riess G (2013) Block copolymer stabilized nonaqueous biocompatible sub-micron emulsions for topical applications. Int J Pharm 448(2):339–345. doi: 10.1016/j.ijpharm.2013.03.051 CrossRefGoogle Scholar
  19. 19.
    Binks BP, Lumsdon SO (2000) Influence of particle wettability on the type and stability of surfactant-free emulsions. Langmuir 16(23):8622–8631. doi: 10.1021/la000189s CrossRefGoogle Scholar
  20. 20.
    Binks BP (2002) Particles as surfactants—similarities and differences. Curr Opin Colloid Interface Sci 7(1-2):21–41. doi: 10.1016/s1359-0294(02)00008-0 CrossRefGoogle Scholar
  21. 21.
    Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilised solely by colloidal particles. Adv Colloid Interf Sci 100:503–546. doi: 10.1016/s0001-8686(02)00069-6 CrossRefGoogle Scholar
  22. 22.
    McMahon JD, Hamill RD, Petersen RV (1963) Emulsifying effects of several ionic surfactants on a nonaqueous immiscible system. J Pharm Sci 52(12):1163. doi: 10.1002/jps.2600521214 CrossRefGoogle Scholar
  23. 23.
    Molau GE (1965) Heterogeneous polymer systems. I. Polymeric oil-in-oil emulsions. J Polym Sci Part A-Gen Pap 3(4PA):1267. doi: 10.1002/pol.1965.100030402 CrossRefGoogle Scholar
  24. 24.
    Periard J, Banderet A, Riess G (1970) Emulsifying effect of block and graft copolymers—oil-in-oil emulsions. J Polym Sci Part B-Polym Lett 8(2):109. doi: 10.1002/pol.1970.110080210 CrossRefGoogle Scholar
  25. 25.
    Crespy D, Landfester K (2011) Making dry fertile: a practical tour of non-aqueous emulsions and miniemulsions, their preparation and some applications. Soft Matter 7(23):11054–11064. doi: 10.1039/c1sm06156a CrossRefGoogle Scholar
  26. 26.
    Klapper M, Nenov S, Haschick R, Müller K, Müllen K (2008) Oil-in-oil emulsions: a unique tool for the formation of polymer nanoparticles. Acc Chem Res 41(9):1190–1201. doi: 10.1021/ar8001206 CrossRefGoogle Scholar
  27. 27.
    Jackson WM, Drury JS (1959) Miscibility of organic solvent pairs. Ind Eng Chem 51(12):1491–1493. doi: 10.1021/ie50600a039 CrossRefGoogle Scholar
  28. 28.
    Imhof A, Pine DJ (1997) Ordered macroporous materials by emulsion templating. Nature 389(6654):948–951. doi: 10.1038/40105 CrossRefGoogle Scholar
  29. 29.
    Crespy D, Landfester K, Schubert US, Schiller A (2010) Potential photoactivated metallopharmaceuticals: from active molecules to supported drugs. Chem Commun 46(36):6651–6662. doi: 10.1039/c0cc01887b CrossRefGoogle Scholar
  30. 30.
    Crespy D, Landfester K (2009) Synthesis of polyvinylpyrrolidone/silver nanoparticles hybrid latex in non-aqueous miniemulsion at high temperature. Polymer 50(7):1616–1620. doi: 10.1016/j.polymer.2009.02.003 CrossRefGoogle Scholar
  31. 31.
    Jaitely V, Sakthivel T, Magee G, Florence AT (2004) Formulation of oil in oil emulsions: potential drug reservoirs for slow release. J Drug Deliv Sci Technol 14(2):113–117. doi: 10.1016/S1773-2247(04)50022-9 CrossRefGoogle Scholar
  32. 32.
    Dorresteijn R, Ragg R, Rago G, Billecke N, Bonn M, Parekh SH, Battagliarin G, Peneva K, Wagner M, Klapper M, Mullen K (2013) Biocompatible polylactide-block-polypeptide-block-polylactide nanocarrier. Biomacromolecules 14(5):1572–1577. doi: 10.1021/bm400216r CrossRefGoogle Scholar
  33. 33.
    Noble PF, Cayre OJ, Alargova RG, Velev OD, Paunov VN (2004) Fabrication of “hairy” colloidosomes with shells of polymeric microrods. J Am Chem Soc 126(26):8092–8093. doi: 10.1021/ja047808u CrossRefGoogle Scholar
  34. 34.
    Alargova RG, Warhadpande DS, Paunov VN, Velev OD (2004) Foam superstabilization by polymer microrods. Langmuir 20(24):10371–10374. doi: 10.1021/la048647a CrossRefGoogle Scholar
  35. 35.
    Thompson KL, Mable CJ, Cockram A, Warren NJ, Cunningham VJ, Jones ER, Verber R, Armes SP (2014) Are block copolymer worms more effective Pickering emulsifiers than block copolymer spheres? Soft Matter 10(43):8615–8626. doi: 10.1039/c4sm01724b CrossRefGoogle Scholar
  36. 36.
    Thompson KL, Fielding LA, Mykhaylyk OO, Lane JA, Derry MJ, Armes SP (2015) Vermicious thermo-responsive Pickering emulsifiers. Chem Sci. doi: 10.1039/C5SC00598A Google Scholar
  37. 37.
    Andresen M, Stenius P (2007) Water-in-oil emulsions stabilized by hydrophobized microfibrillated cellulose. J Dispers Sci Technol 28(6):837–844. doi: 10.1080/01932690701341827 CrossRefGoogle Scholar
  38. 38.
    Madivala B, Fransaer J, Vermant J (2009) Self-assembly and rheology of ellipsoidal particles at interfaces. Langmuir 25(5):2718–2728. doi: 10.1021/la803554u CrossRefGoogle Scholar
  39. 39.
    Madivala B, Vandebril S, Fransaer J, Vermant J (2009) Exploiting particle shape in solid stabilized emulsions. Soft Matter 5(8):1717–1727. doi: 10.1039/b816680c CrossRefGoogle Scholar
  40. 40.
    Kalashnikova I, Bizot H, Bertoncini P, Cathala B, Capron I (2013) Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions. Soft Matter 9(3):952–959. doi: 10.1039/c2sm26472b CrossRefGoogle Scholar
  41. 41.
    Hawker CJ (1994) Molecular-weight control by a living free-radical polymerization process. J Am Chem Soc 116(24):11185–11186. doi: 10.1021/ja00103a055 CrossRefGoogle Scholar
  42. 42.
    Wang JS, Matyjaszewski K (1995) Controlled living radical polymerization—halogen atom-transfer radical polymerization promoted by a CU(I)CU(II) redox process. Macromolecules 28(23):7901–7910. doi: 10.1021/ma00127a042 CrossRefGoogle Scholar
  43. 43.
    Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, Mayadunne RTA, Meijs GF, Moad CL, Moad G, Rizzardo E, Thang SH (1998) Living free-radical polymerization by reversible addition-fragmentation chain transfer: the RAFT process. Macromolecules 31(16):5559–5562. doi: 10.1021/ma9804951 CrossRefGoogle Scholar
  44. 44.
    Benoit D, Chaplinski V, Braslau R, Hawker CJ (1999) Development of a universal alkoxyamine for “living” free radical polymerizations. J Am Chem Soc 121(16):3904–3920. doi: 10.1021/ja984013c CrossRefGoogle Scholar
  45. 45.
    Kamigaito M, Ando T, Sawamoto M (2001) Metal-catalyzed living radical polymerization. Chem Rev 101(12):3689–3745. doi: 10.1021/cr9901182 CrossRefGoogle Scholar
  46. 46.
    Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32(1):93–146. doi: 10.1016/j.progpolymsci.2006.11.002 CrossRefGoogle Scholar
  47. 47.
    Qiu J, Charleux B, Matyjaszewski K (2001) Controlled/living radical polymerization in aqueous media: homogeneous and heterogeneous systems. Prog Polym Sci 26(10):2083–2134. doi: 10.1016/s0079-6700(01)00033-8 CrossRefGoogle Scholar
  48. 48.
    An ZS, Shi QH, Tang W, Tsung CK, Hawker CJ, Stucky GD (2007) Facile RAFT precipitation polymerization for the microwave-assisted synthesis of well-defined, double hydrophilic block copolymers and nanostructured hydrogels. J Am Chem Soc 129(46):14493–14499. doi: 10.1021/ja0756974 CrossRefGoogle Scholar
  49. 49.
    Cunningham MF (2008) Controlled/living radical polymerization in aqueous dispersed systems. Prog Polym Sci 33(4):365–398. doi: 10.1016/j.progpolymsci.2007.11.002 CrossRefGoogle Scholar
  50. 50.
    Rieger J, Stoffelbach F, Bui C, Alaimo D, Jerome C, Charleux B (2008) Amphiphilic poly(ethylene oxide) macromolecular RAFT agent as a stabilizer and control agent in ab initio batch emulsion polymerization. Macromolecules 41(12):4065–4068. doi: 10.1021/ma800544v CrossRefGoogle Scholar
  51. 51.
    Petzetakis N, Dove AP, O’Reilly RK (2011) Cylindrical micelles from the living crystallization-driven self-assembly of poly(lactide)-containing block copolymers. Chem Sci 2(5):955–960. doi: 10.1039/c0sc00596g CrossRefGoogle Scholar
  52. 52.
    Sugihara S, Blanazs A, Armes SP, Ryan AJ, Lewis AL (2011) Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J Am Chem Soc 133(93):15707–15713. doi: 10.1021/ja205887v CrossRefGoogle Scholar
  53. 53.
    Delaittre G, Save M, Gaborieau M, Castignolles P, Rieger J, Charleux B (2012) Synthesis by nitroxide-mediated aqueous dispersion polymerization, characterization, and physical core-crosslinking of pH- and thermoresponsive dynamic diblock copolymer micelles. Polym Chem 3(6):1526–1538. doi: 10.1039/c2py20084h CrossRefGoogle Scholar
  54. 54.
    Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J Am Chem Soc 136(29):10174–10185. doi: 10.1021/ja502843f CrossRefGoogle Scholar
  55. 55.
    Cai W, Wan W, Hong C, Huang C, Pan C-Y (2010) Morphology transitions in RAFT polymerization. Soft Matter 6(21):5554–5561. doi: 10.1039/C0SM00284D CrossRefGoogle Scholar
  56. 56.
    Blanazs A, Madsen J, Battaglia G, Ryan AJ, Armes SP (2011) Mechanistic Insights for block copolymer morphologies: how do worms form vesicles? J Am Chem Soc 133(41):16581–16587. doi: 10.1021/ja206301a CrossRefGoogle Scholar
  57. 57.
    Charleux B, Delaittre G, Rieger J, D’Agosto F (2012) Polymerization-induced self-assembly: from soluble macromolecules to block copolymer nano-objects in one step. Macromolecules 45(17):6753–6765. doi: 10.1021/ma300713f CrossRefGoogle Scholar
  58. 58.
    Semsarilar M, Jones ER, Blanazs A, Armes SP (2012) Efficient synthesis of sterically-stabilized nano-objects via RAFT dispersion polymerization of benzyl methacrylate in alcoholic media. Adv Mater 24(25):3378–3382. doi: 10.1002/adma.201200925 CrossRefGoogle Scholar
  59. 59.
    Fielding LA, Derry MJ, Ladmiral V, Rosselgong J, Rodrigues AM, Ratcliffe LPD, Sugihara S, Armes SP (2013) RAFT dispersion polymerization in non-polar solvents: facile production of block copolymer spheres, worms and vesicles in n-alkanes. Chem Sci 4:2081–2087. doi: 10.1039/C3SC50305D CrossRefGoogle Scholar
  60. 60.
    Blanazs A, Armes SP, Ryan AJ (2009) Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications. Macromol Rapid Commun 30(4-5):267–277. doi: 10.1002/marc.200800713 CrossRefGoogle Scholar
  61. 61.
    Monteiro MJ, Cunningham MF (2012) Polymer nanoparticles via living radical polymerization in aqueous dispersions: design and applications. Macromolecules 45(12):4939–4957. doi: 10.1021/ma300170c CrossRefGoogle Scholar
  62. 62.
    Wan W-M, Pan C-Y (2010) One-pot synthesis of polymeric nanomaterials via RAFT dispersion polymerization induced self-assembly and re-organization. Polym Chem 1(9):1475–1484. doi: 10.1039/C0PY00124D CrossRefGoogle Scholar
  63. 63.
    Huang C-Q, Pan C-Y (2010) Direct preparation of vesicles from one-pot RAFT dispersion polymerization. Polymer 51(22):5115–5121. doi: 10.1016/j.polymer.2010.08.056 CrossRefGoogle Scholar
  64. 64.
    Jones ER, Semsarilar M, Blanazs A, Armes SP (2012) Efficient synthesis of amine-functional diblock copolymer nanoparticles via RAFT dispersion polymerization of benzyl methacrylate in alcoholic media. Macromolecules 45(12):5091–5098. doi: 10.1021/ma300898e CrossRefGoogle Scholar
  65. 65.
    Gonzato C, Semsarilar M, Jones ER, Li F, Krooshof GJP, Wyman P, Mykhaylyk OO, Tuinier R, Armes SP (2014) Rational synthesis of low-polydispersity block copolymer vesicles in concentrated solution via polymerization-induced self-assembly. J Am Chem Soc 136(31):11100–11106. doi: 10.1021/ja505406s CrossRefGoogle Scholar
  66. 66.
    Houillot L, Bui C, Save M, Charleux B, Farcet C, Moire C, Raust JA, Rodriguez I (2007) Synthesis of well-defined polyacrylate particle dispersions in organic medium using simultaneous RAFT polymerization and self-assembly of block copolymers. A strong influence of the selected thiocarbonylthio chain transfer agent. Macromolecules 40(18):6500–6509. doi: 10.1021/ma0703249 CrossRefGoogle Scholar
  67. 67.
    Fielding LA, Lane JA, Derry MJ, Mykhaylyk OO, Armes SP (2014) Thermo-responsive diblock copolymer worm gels in non-polar solvents. J Am Chem Soc 136(15):5790–5798. doi: 10.1021/ja501756h CrossRefGoogle Scholar
  68. 68.
    Bernard J, Save M, Arathoon B, Charleux B (2008) Preparation of a xanthate-terminated dextran by click chemistry: application to the synthesis of polysaccharide-coated nanoparticles via surfactant-free <I> ab initio </I> emulsion polymerization of vinyl acetate. J Polym Sci Part A Polym Chem 46(8):2845–2857. doi: 10.1002/pola.22618 CrossRefGoogle Scholar
  69. 69.
    Rieger J, Osterwinter G, Bui CO, Stoffelbach F, Charleux B (2009) Surfactant-free controlled/living radical emulsion (co)polymerization of n-butyl acrylate and methyl methacrylate via RAFT using amphiphilic poly(ethylene oxide)-based trithiocarbonate chain transfer agents. Macromolecules 42(15):5518–5525. doi: 10.1021/ma9008803 CrossRefGoogle Scholar
  70. 70.
    Rieger J, Zhang W, Fo S, Charleux B (2010) Surfactant-free RAFT emulsion polymerization using poly(n, n-dimethylacrylamide) trithiocarbonate macromolecular chain transfer agents. Macromolecules 43(15):6302–6310. doi: 10.1021/ma1009269 CrossRefGoogle Scholar
  71. 71.
    Boissé S, Rieger J, Pembouong G, Beaunier P, Charleux B (2011) Influence of the stirring speed and CaCl2 concentration on the nano-object morphologies obtained via RAFT-mediated aqueous emulsion polymerization in the presence of a water-soluble macroRAFT agent. J Polym Sci Part A Polym Chem 49(15):3346–3354. doi: 10.1002/pola.24771 CrossRefGoogle Scholar
  72. 72.
    Zhang W, D’Agosto F, Boyron O, Rieger J, Charleux B (2011) One-pot synthesis of poly(methacrylic acid-co-poly(ethylene oxide) methyl ether methacrylate)-b-polystyrene amphiphilic block copolymers and their self-assemblies in water via RAFT-mediated radical emulsion polymerization. A kinetic study. Macromolecules 44(19):7584–7593. doi: 10.1021/ma201515n CrossRefGoogle Scholar
  73. 73.
    Zhang X, Boissé S, Zhang W, Beaunier P, D’Agosto F, Rieger J, Charleux B (2011) Well-defined amphiphilic block copolymers and nano-objects formed in situ via RAFT-mediated aqueous emulsion polymerization. Macromolecules 44(11):4149–4158. doi: 10.1021/ma2005926 CrossRefGoogle Scholar
  74. 74.
    Zhang W, D’Agosto F, Boyron O, Rieger J, Charleux B (2012) Toward a better understanding of the parameters that lead to the formation of nonspherical polystyrene particles via RAFT-mediated one-pot aqueous emulsion polymerization. Macromolecules 45(10):4075–4084. doi: 10.1021/ma300596f CrossRefGoogle Scholar
  75. 75.
    Sun JT, Hong CY, Pan CY (2013) Recent advances in RAFT dispersion polymerization for preparation of block copolymer aggregates. Polym Chem 4(4):873–881. doi: 10.1039/c2py20612a CrossRefGoogle Scholar
  76. 76.
    Zong MM, Thurecht KJ, Howdle SM (2008) Dispersion polymerisation in supercritical CO(2) using macro-RAFT agents. Chem Commun 45:5942–5944. doi: 10.1039/b812827h CrossRefGoogle Scholar
  77. 77.
    Boissé S, Rieger J, Belal K, Di-Cicco A, Beaunier P, Li M-H, Charleux B (2010) Amphiphilic block copolymer nano-fibers via RAFT-mediated polymerization in aqueous dispersed system. Chem Commun 46(11):1950–1952. doi: 10.1039/B923667H CrossRefGoogle Scholar
  78. 78.
    Zhang X, Boissé S, Bui C, Albouy P-A, Brulet A, Li M-H, Rieger J, Charleux B (2012) Amphiphilic liquid-crystal block copolymer nanofibers via RAFT-mediated dispersion polymerization. Soft Matter 8(4):1130–1141. doi: 10.1039/C1SM06598J CrossRefGoogle Scholar
  79. 79.
    Semsarilar M, Ladmiral V, Blanazs A, Armes SP (2012) Anionic polyelectrolyte-stabilized nanoparticles via RAFT aqueous dispersion polymerization. Langmuir 28(1):914–922. doi: 10.1021/la203991y CrossRefGoogle Scholar
  80. 80.
    Zhang X, Rieger J, Charleux B (2012) Effect of the solvent composition on the morphology of nano-objects synthesized via RAFT polymerization of benzyl methacrylate in dispersed systems. Polym Chem 3:1502–1509. doi: 10.1039/C2PY20071F CrossRefGoogle Scholar
  81. 81.
    Thompson KL, Lane JA, Derry MJ, Armes SP (2015) Non-aqueous isorefractive pickering emulsions. Langmuir 31(15):4373–4376. doi: 10.1021/acs.langmuir.5b00630 CrossRefGoogle Scholar
  82. 82.
    Kalashnikova I, Bizot H, Cathala B, Capron I (2011) New pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27(12):7471–7479. doi: 10.1021/la200971f CrossRefGoogle Scholar
  83. 83.
    Cerce T, Peter S, Weidner E (2005) Biodiesel-transesterification of biological oils with liquid catalysts: thermodynamic properties of oil-methanol-amine mixtures. Ind Eng Chem Res 44(25):9535–9541. doi: 10.1021/ie050252e CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • S. L. Rizzelli
    • 1
  • E. R. Jones
    • 1
  • K. L. Thompson
    • 1
  • S. P. Armes
    • 1
  1. 1.Department of Chemistry, Dainton BuildingUniversity of SheffieldSheffieldUK

Personalised recommendations