Colloid and Polymer Science

, Volume 293, Issue 11, pp 3107–3117 | Cite as

Structures of adsorption layers of surfactant mixtures on nonpolar solid surfaces

  • Wolfgang von Rybinski
  • Meriem Jabnoun
  • Julian van Megen
  • Filipp Oesterhelt
  • Claus Seidel
Invited Article

Abstract

The structure of the adsorbed layer of mixtures of a low molecular mass nonionic surfactant (alkyl heptaglycolether, C12EO7) with low molecular mass anionic (sodium dodecylsulfate, SDS, and sodium dodecylbenzenesulfonate, SDBS) and high molecular mass nonionic surfactants (EO37PO56EO37) was studied by atomic force microscopy in the combination with adsorption isotherms and adsorption enthalpies by isothermal titration calorimetry. The single surfactants C12EO7 and SDS show domains of parallel stripes on the graphite lattice in the atomic force microscopy (AFM) images. These parallel stripes can be related to hemicylindrical aggregates of a width of about 5 nm repeated in a periodic order which was proposed by different authors before. These structures are backed up by the results of the adsorption isotherms and the calorimetric measurements of the adsorption enthalpies. For SDBS and the high molecular mass nonionic surfactant, no such structures are observed in the AFM images despite an adsorption of surfactants on the surface. Mixtures of C12EO7 and the anionic surfactants give similar parallel stripes as the nonionic surfactant alone even in combination with SDBS, which indicates ideal mixing behavior on the surface. The concentration ratio of the surfactants on the surface differs from that in solution. For a mixed system of C12EO7 and the high molecular mass nonionic surfactant, a demixing of the surfactants on the surface can be assumed.

Keywords

Atomic force microscopy Surfactant Aggregation Adsorption 

References

  1. 1.
    Hoffmann H, Hofmann S, Illner JC (1994) Phase behavior and properties of micellar solutions of mixed zwitterionic and ionic surfactants. Trends in colloid and interface science VIII. Progr Colloid Polym Sci 97:103–109CrossRefGoogle Scholar
  2. 2.
    Hoffmann H, Munkert U, Thunig C, Valiente M (1994) The lyotropic mesophases in dilute surfactant mixtures of tetradecyldimethylaminoxide, tetradecyltrimethylammonium bromide, and hexanol: the influence of ionic charge on the mesophases. J Colloid Interface Sci 163:217–228CrossRefGoogle Scholar
  3. 3.
    Tadros TF (1987) Solid liquid dispersions. Academic Press, LondonGoogle Scholar
  4. 4.
    Dobiás B, Qiu X, von Rybinski W (1999) Solid–liquid dispersions. Marcel Dekker, New YorkGoogle Scholar
  5. 5.
    Manne S, Cleveland JP, Gaub HE, Stucky GD, Hansma PK (1994) Direct visualization of surfactant hemimicelles by force microscopy of the electrical double layer. Langmuir 10:4409–4413CrossRefGoogle Scholar
  6. 6.
    Wanless EJ, Ducker WA (1996) Organization of sodium dodecyl sulfate at the graphite-solution interface. J Phys Chem 100:3207–3214CrossRefGoogle Scholar
  7. 7.
    Greenwood FG, Parfitt GD, Picton NH, Wharton DG (1968) Adsorption and wetting phenomena associated with graphon in aqueous surfactant solutions. In: Weber WJ, Matijevic E (eds) Adsorption from aqueous solutions. American Chemical Society, Washington, DC, pp 135–144CrossRefGoogle Scholar
  8. 8.
    Groszek AJ (1970) Selective adsorption at graphite/hydrocarbon interfaces. Proc R Soc Lond A 314:473–498CrossRefGoogle Scholar
  9. 9.
    Rabe JP, Buchholz S (1995) Commensurability and mobility in two-dimensional molecular patterns on graphite. Science 253:424–427CrossRefGoogle Scholar
  10. 10.
    Manne S, Gaub HE (1995) Molecular organization of surfactants at solid–liquid interfaces. Science 270:1480–1482CrossRefGoogle Scholar
  11. 11.
    Wanless EJ, Ducker WA (1997) Weak influence of divalent ions on anionic surfactant surface-aggregation. Langmuir 13:1463–1474CrossRefGoogle Scholar
  12. 12.
    Grant LM, Tiberg F, Ducker WA (1998) nanometer-scale organization of ethylene oxide surfactants on graphite, hydrophilic silica, and hydrophobic silica. J Phys Chem B 102:4288–4294CrossRefGoogle Scholar
  13. 13.
    Huang L, Maltesh C, Somasundaran P (1996) Adsorption behavior of cationic and nonionic surfactant mixtures at the alumina–water interface. J Colloid Interface Sci 177:222–228CrossRefGoogle Scholar
  14. 14.
    Holland PM, Rubingh DN (1992) Mixed surfactants system, ASC symposium series 501. American chemical society, Washington, pp 1–43CrossRefGoogle Scholar
  15. 15.
    Ducker WA, Wanless EJ (1996) Surface-aggregate shape transformation. Langmuir 12:5915–5920CrossRefGoogle Scholar
  16. 16.
    Wanless EJ, Davey TW, Ducker WA (1997) Surface aggregate phase transition. Langmuir 13:4223–4228CrossRefGoogle Scholar
  17. 17.
    Rumpel A, Novak M, Walter J, Braunschweig B, Halik M, Peukert W (2011) Tuning the molecular order of C60 functionalized phosphonic acid monolayers. Langmuir 27:15016–15023CrossRefGoogle Scholar
  18. 18.
    Sastry NV, Hoffmann H (2004) Interaction of amphiphilic block copolymer micelles with surfactants. Colloids Surf A 250:247–261CrossRefGoogle Scholar
  19. 19.
    Flemming BD, Wanless EJ (2000) Soft-contact atomic force microscopy imaging of adsorbed surfactant and polymer layers. Microsc Microanal 6:104–112Google Scholar
  20. 20.
    Hoffmann I, Thiele M, Graetz S, Scholz J, Barreleiro P, von Rybinski W, Gradzielski M (2012) On the influence of surfactants on the adsorption of polysaccharide-based polymers on cotton studied by means of fluorescence spectroscopy. Langmuir 28:11400–11409CrossRefGoogle Scholar
  21. 21.
    Jabnoun M (2012) Adsorption layers of surfactant mixtures on non-polar solid particles and stability of dispersions, PhD thesis. University of Duesseldorf, GermanyGoogle Scholar
  22. 22.
    van Megen J (2013) Aggregation structures of mixtures of high and low molecular mass surface active substances on surfaces and in the bulk phase, Master thesis. University of Duesseldorf, GermanyGoogle Scholar
  23. 23.
    Tsubouchi M, Yamasaki N, Yanagisawa K (1985) Two-phase titration of poly(oxyethylene) nonionic surfactants with tetrakis(4-fluorophenyl)borate. Anal Chem 57:783–784CrossRefGoogle Scholar
  24. 24.
    Király Z, Börner RHK, Findenegg GH (1997) Adsorption and aggregation of C8E4 and C8G1 nonionic surfactants on hydrophilic silica studied by calorimetry. Langmuir 13:3308–3315CrossRefGoogle Scholar
  25. 25.
    Patrick HN, Warr GG, Manne S, Aksay IA (1997) Self-assembly structures of nonionic surfactants at graphite/solution interfaces. Langmuir 13:4349–4356CrossRefGoogle Scholar
  26. 26.
    Kaplik H (2012) Surface activity and aggregation in solutions of mixtures of anionic and nonionic surfactants, Bachelor thesis. University of Duesseldorf, GermanyGoogle Scholar
  27. 27.
    Capella B, Dietler G (1999) Force-distance curves by atomic force microscopy. Surf Sci Rep 34:1–104CrossRefGoogle Scholar
  28. 28.
    Patrick HN, Warr GG (2000) Self-assembly structures of nonionic surfactants at graphite–solution interfaces. 2. Effect of polydispersity and alkyl chain branching. Colloids Surf A 162:149–157CrossRefGoogle Scholar
  29. 29.
    Sein A, Engberts JBFN, van der Linden E, van de Pas JC (1996) Lyotropic phases of dodecylbenzenesulfonates with different counterions in water. Langmuir 12:2913–2923CrossRefGoogle Scholar
  30. 30.
    Liu X, Wu D, Turgman-Cohen S, Grenzer J, Theyson TW, Rojas OJ (2010) Adsorption of a nonionic symmetric triblock copolymer on surfaces with different hydrophobicity. Langmuir 26:9565–9574CrossRefGoogle Scholar
  31. 31.
    Király Z, Findenegg GH, Klumpp E, Schlimper H, Dékány I (2001) Adsorption calorimetric study of the organization of sodium n-decyl sulfate at the graphite/solution interface. Langmuir 17:2420–2425CrossRefGoogle Scholar
  32. 32.
    Zhu BY, Gu T (1991) Interfacial film of surfactant adsorbed at a solid/liquid interface. J Chem Soc Faraday Trans 87:2745–2748CrossRefGoogle Scholar
  33. 33.
    Király Z, Findenegg GH (1998) Calorimetric evidence of the formation of half-cylindrical aggregates of a cationic surfactant at the graphite/water interface. J Phys Chem B 102:1203–1211CrossRefGoogle Scholar
  34. 34.
    Mazer NA, Olofsson G (1982) Calorimetric studies of micelle formation and micellar growth in sodium dodecyl sulfate solutions. J Phys Chem 86:4584–4593CrossRefGoogle Scholar
  35. 35.
    Rosen MJ, Hua XY (1982) Synergism in binary mixtures of surfactants:II. Some experimental data. J Am Oil Chem Soc 59:582–585CrossRefGoogle Scholar
  36. 36.
    Chobanu MM, Ropot VM (1981) Zh. Prikl. Khim. 54:2221 in Schick MJ (1987) Nonionic surfactants. Marcel Dekker, New York, p 106Google Scholar
  37. 37.
    Gao Y, Zhang Y, Huang Z, Gu T (1989) Acta Sci Nat Univ Pekin 25:726–733Google Scholar
  38. 38.
    Jost F, Leiter H, Schwuger MJ (1988) Synergisms in binary surfactant mixtures. Colloid Polym Sci 266:554–561CrossRefGoogle Scholar
  39. 39.
    Couderc S, Li Y, Bloor DM, Holzwarth JF, Wyn-Jones E (2001) Interaction between the nonionic surfactant hexaethylene glycol mono-n-dodecyl ether (C12EO6) and the surface active nonionic ABA block copolymer pluronic F127 (EO97PO69EO97)-formation of mixed micelles studied using isothermal titration calorimetry and differential scanning calorimetry. Langmuir 17:4818–4824CrossRefGoogle Scholar
  40. 40.
    Blom A, Drummond C, Wanless EJ, Richetti P, Warr GG (2005) Surfactant boundary lubricant film modified by an amphiphilic diblock copolymer. Langmuir 21:2779–2788CrossRefGoogle Scholar
  41. 41.
    Hecht E, Hoffmann H (1994) Interaction of ABA block copolymers with ionic surfactants in aqueous solution. Langmuir 10:86–91CrossRefGoogle Scholar
  42. 42.
    Hecht E, Mortensen K, Gradzielski M, Hoffmann H (1995) Interaction of ABA block copolymers with ionic surfactants: influence on micellization and gelation. J Phys Chem 99:4866–4874CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Wolfgang von Rybinski
    • 1
  • Meriem Jabnoun
    • 1
  • Julian van Megen
    • 1
  • Filipp Oesterhelt
    • 2
  • Claus Seidel
    • 1
  1. 1.Institute of Molecular Physical ChemistryHeinrich-Heine-University DuesseldorfDuesseldorfGermany
  2. 2.Institute of Physical BiologyHeinrich-Heine-University DuesseldorfDuesseldorfGermany

Personalised recommendations