Colloid and Polymer Science

, Volume 293, Issue 11, pp 3131–3143 | Cite as

Catanionic surfactant systems—thermodynamic and structural conditions revisited

  • Leonardo Chiappisi
  • Hacer Yalcinkaya
  • Vicknesh Kumar Gopalakrishnan
  • Michael Gradzielski
  • Thomas Zemb
Invited Article


In this work, we review shortly the current state of knowledge about catanionic surfactant systems with a focus on the detailed understanding based on the molecular buildup of such systems and of the electrostatic interaction that controls their amphiphilic monolayer and bilayer. Particularly relevant here is the extent of hydrophobicity of the oppositely charged partners, which can range from just having a more or less hydrophobic counterion until a real surfactant of opposite charge. Based on this discussion, we then investigate different systems based on cetyltrimethylammonium (CTA) combined with either laurate (L) as an oppositely charged surfactant or naphthalenesulfonate (NS) as a strongly hydrophobic counterion. Both systems were studied for the case of having salt present by combining the two amphiphilic salts but also the salt-free situation which arises from combining the hydroxide with the acid. The phase behavior was determined as well as the mesoscopic structures present, as obtained by small-angle neutron scattering (SANS) and light scattering, which allow to discern formation of wormlike micelles and vesicles. Their presence was then further confirmed by rheological measurements, where in particular normal forces allow to distinguish the two types of aggregates, and control of rheology is a key property in such systems. In addition, the thermodynamic conditions in these systems were determined by means of differential scanning calorimetry (DSC). Based on these results, a consistent understanding of the formed structures and their macroscopic properties that arise from the molecular conditions in these systems is presented.


Catanionic surfactants Wormlike micelles Vesicles Phase behavior 



The support of Anja von Lospichl and Benjamin von Lospichl during SANS beamtime is gratefully acknowledged. For the WET-STEM, we are grateful to Johann Ravaux and Anne Laure Fameau. Th. Z would like to thank the Deutsche Forschungsgemeinschaft (DFG) for awarding him a Mercator professorship within the International Graduate Research Training Group 1524 (“Self-Assembled Soft Matter Nano-Structures at Interfaces”).

Supplementary material

396_2015_3739_MOESM1_ESM.pdf (541 kb)
ESM 1 (PDF 540 kb)


  1. 1.
    Kruyt HR, Jonker GH, Overbeek JTG (1952) In: Kruyt HR (ed) Colloid Science. Elsevier Publishing Company, AmsterdamGoogle Scholar
  2. 2.
    Jokela P, Jönsson B, Wennerstroem H (1985) Phase Equilibria in Systems Containing Both an Anionic and a Cationic Amphiphile. A Thermodynamic Model Calculation. In Surfactants, Adsorption, Surface Spectroscopy and Disperse Systems; Lindman, B., Olofsson G, Stenius P, Eds.; Progress in Colloid & Polymer Science; Steinkopff: Darmstadt. 70, 17–22Google Scholar
  3. 3.
    Jokela P, Jönsson B, Eichmueller B, Fontell K (1988) Phase equilibria in the sodium octanoate-octylammonium octanoate-water system. Langmuir 4(1):187–192CrossRefGoogle Scholar
  4. 4.
    Kaler EW, Murthy AK, Rodriguez BE, Zasadzinski JA (1989) Spontaneous vesicle formation in aqueous mixtures of single-tailed surfactants. Science (80-) 245(4924):1371–1374CrossRefGoogle Scholar
  5. 5.
    Jokela P (1987) Catanionic surfactants, University of LundGoogle Scholar
  6. 6.
    Blaurock AE, Gamble RC (1979) Small phosphatidylcholine vesicles appear to be faceted below the thermal phase transition. J Membr Biol 50(2):187–204CrossRefGoogle Scholar
  7. 7.
    Dubois M, Zemb T (2000) Swelling limits for bilayer microstructures: the implosion of lamellar structure versus disordered lamellae. Curr Opin Colloid Interface Sci 5(1–2):27–37CrossRefGoogle Scholar
  8. 8.
    Dubois M, Carrière D, Iyer R, Arunagirinathan MA, Bellare J, Verbavatz J-M, Zemb T (2008) From dispersed nanodiscs to thin films of layered organic material via reversible swelling. Colloids Surfaces A Physicochem Eng Asp 319(1–3):90–97CrossRefGoogle Scholar
  9. 9.
    Jokela P, Jönsson B, Khan A (1987) Phase equilibria of catanionic surfactant-water systems. J Phys Chem 91(12):3291–3298CrossRefGoogle Scholar
  10. 10.
    Hao J, Hoffmann H, Horbaschek K (2001) A novel cationic/anionic surfactant system from a zwitterionic alkyldimethylamine oxide and dihydroperfluorooctanoic acid. Langmuir 17(14):4151–4160CrossRefGoogle Scholar
  11. 11.
    Tanaka S, Kawasaki H, Suzuki M, Annaka M, Nemoto N, Almgren M, Maeda H (2004) Vesicle formation in oleyldimethylamine oxide/sodium oleate mixtures. Colloid Polym Sci 282(10):1140–1145CrossRefGoogle Scholar
  12. 12.
    Hao J, Hoffmann H, Horbaschek K (2000) A vesicle phase that is prepared by shear from a novel kinetically produced stacked L Α -Phase. J Phys Chem B 104(44):10144–10153CrossRefGoogle Scholar
  13. 13.
    Kawasaki H, Souda M, Tanaka S, Nemoto N, Karlsson G, Almgren M, Maeda H (2002) Reversible vesicle formation by changing pH. J Phys Chem B 106(7):1524–1527CrossRefGoogle Scholar
  14. 14.
    Maeda H, Tanaka S, Ono Y, Miyahara M, Kawasaki H, Nemoto N, Almgren M (2006) Reversible micelle-vesicle conversion of oleyldimethylamine oxide by pH changes. J Phys Chem B 110(25):12451–12458CrossRefGoogle Scholar
  15. 15.
    Bergström LM (2001) Synergistic effects in mixtures of an anionic and a cationic surfactant. Langmuir 17(11):993–998CrossRefGoogle Scholar
  16. 16.
    Bauduin P, Zemb T (2014) Perpendicular and lateral equations of state in layered systems of amphiphiles. Curr Opin Colloid Interface SciGoogle Scholar
  17. 17.
    Israelachvili JN, Mitchell DJ, Ninham BW (1976) Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2 72:1525CrossRefGoogle Scholar
  18. 18.
    Bergström LM (1996) Thermodynamics of vesicle formation from a mixture of anionic and cationic surfactants. Langmuir 12(7):2454–2463CrossRefGoogle Scholar
  19. 19.
    Stellner KL, Amante JC, Scamehorn JF, Harwell JH (1988) Precipitation phenomena in mixtures of anionic and cationic surfactants in aqueous solutions. J Colloid Interface Sci 123(1):186–200CrossRefGoogle Scholar
  20. 20.
    Amante JC, Scamehorn JF, Harwell JH (1991) Precipitation of mixtures of anionic and cationic surfactants. J Colloid Interface Sci 144(1):243–253CrossRefGoogle Scholar
  21. 21.
    Caria A, Khan A (1996) Phase behavior of catanionic surfactant mixtures: sodium bis(2-ethylhexyl)sulfosuccinate − didodecyldimethylammonium bromide − water system. Langmuir 12(26):6282–6290CrossRefGoogle Scholar
  22. 22.
    Wolf C, Bressel K, Drechsler M, Gradzielski M (2009) Comparison of vesicle formation in zwitanionic and catanionic mixtures of hydrocarbon and fluorocarbon surfactants: phase behavior and structural progression. Langmuir 25(19):11358–11366CrossRefGoogle Scholar
  23. 23.
    Bressel K, Prevost S, Appavou M-S, Tiersch B, Koetz J, Gradzielski M (2011) Phase behaviour and structure of zwitanionic mixtures of perfluorocarboxylates and tetradecyldimethylamine oxide—dependence on chain length of the perfluoro surfactant. Soft Matter 7(23):11232CrossRefGoogle Scholar
  24. 24.
    Klein R, Touraud D, Kunz W (2008) Choline carboxylate surfactants: biocompatible and highly soluble in water. Green Chem 10(4):433CrossRefGoogle Scholar
  25. 25.
    Shikata T, Hirata H, Kotaka T (1988) Micelle formation of detergent molecules in aqueous media. 2. Role of free salicylate ions on viscoelastic properties of aqueous cetyltrimethylammonium bromide-sodium salicylate solutions. Langmuir 4(2):354–359CrossRefGoogle Scholar
  26. 26.
    Rehage H, Hoffmann H (1982) Shear induced phase transitions in highly dilute aqueous detergent solutions. Rheol Acta 21(4–5):561–563CrossRefGoogle Scholar
  27. 27.
    Raghavan SR, Fritz G, Kaler EW (2002) Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir 18(10):3797–3803CrossRefGoogle Scholar
  28. 28.
    Abdel-Rahem R, Gradzielski M, Hoffmann H (2005) A novel viscoelastic system from a cationic surfactant and a hydrophobic counterion. J Colloid Interface Sci 288(2):570–582CrossRefGoogle Scholar
  29. 29.
    Eastoe J, Rogueda P, Shariatmadari D, Heenan R (1996) Micelles of asymmetric chain catanionic surfactants. Colloids Surfaces A Physicochem Eng Asp 117(3):215–225CrossRefGoogle Scholar
  30. 30.
    Hao J, Hoffmann H (2004) Self-assembled structures in excess and salt-free catanionic surfactant solutions. Curr Opin Colloid Interface Sci 9(3–4):279–293CrossRefGoogle Scholar
  31. 31.
    Zemb T (1999) Self-assembly of flat nanodiscs in salt-free catanionic surfactant solutions. Science (80-) 283(5403):816–819CrossRefGoogle Scholar
  32. 32.
    Dubois M, Demé B, Gulik-Krzywicki T, Dedieu JC, Vautrin C, Désert S, Perez E, Zemb T (2001) Self-assembly of regular hollow icosahedra in salt-free catanionic solutions. Nature 411(6838):672–675CrossRefGoogle Scholar
  33. 33.
    Sun W, Shen Y, Hao J (2011) Phase behavior and rheological properties of salt-free catanionic TTAOH/DA/H2O system in the presence of hydrophilic and hydrophobic salts. Langmuir 27(5):1675–1682CrossRefGoogle Scholar
  34. 34.
    Vlachy N, Renoncourt A, Drechsler M, Verbavatz J-M, Touraud D, Kunz W (2008) Blastulae aggregates: new intermediate structures in the micelle-to-vesicle transition of catanionic systems. J Colloid Interface Sci 320(1):360–363CrossRefGoogle Scholar
  35. 35.
    Jung HT, Coldren B, Zasadzinski JA, Iampietro DJ, Kaler EW (2001) The origins of stability of spontaneous vesicles. Proc Natl Acad Sci 98(4):1353–1357CrossRefGoogle Scholar
  36. 36.
    Gummel J, Sztucki M, Narayanan T, Gradzielski M (2011) Concentration dependent pathways in spontaneous self-assembly of unilamellar vesicles. Soft Matter 7(12):5731CrossRefGoogle Scholar
  37. 37.
    He X, Schmid F (2008) Spontaneous formation of complex micelles from a homogeneous solution. Phys Rev Lett 100(13):137802CrossRefGoogle Scholar
  38. 38.
    Shioi A, Hatton TA (2002) Model for formation and growth of vesicles in mixed anionic/cationic (SOS/CTAB) surfactant systems. Langmuir 18(20):7341–7348CrossRefGoogle Scholar
  39. 39.
    Weiss T, Narayanan T, Wolf C, Gradzielski M, Panine P, Finet S, Helsby W (2005) Dynamics of the Self-Assembly of Unilamellar Vesicles. Phys Rev Lett 94 (3)Google Scholar
  40. 40.
    Weiss TM, Narayanan T, Gradzielski M (2008) Dynamics of spontaneous vesicle formation in fluorocarbon and hydrocarbon surfactant mixtures. Langmuir 24(8):3759–3766CrossRefGoogle Scholar
  41. 41.
    Helfrich W (1974) The size of bilayer vesicles generated by sonication. Phys Lett A 50(2):115–116CrossRefGoogle Scholar
  42. 42.
    Fromherz P (1983) Lipid-vesicle structure: size control by edge-active agents. Chem Phys Lett 94(3):259–266CrossRefGoogle Scholar
  43. 43.
    Bressel K, Muthig M, Prevost S, Gummel JJ, Narayanan T, Gradzielski M, Prévost S (2012) Shaping vesicles-controlling size and stability by admixture of amphiphilic copolymer. ACS Nano 6(7):5858–5865CrossRefGoogle Scholar
  44. 44.
    Schmölzer S, Gräbner D, Gradzielski M, Narayanan T (2002) Millisecond-range time-resolved small-angle X-Ray scattering studies of micellar transformations. Phys Rev Lett 88(25):258301CrossRefGoogle Scholar
  45. 45.
    Khan A, Marques EF (1999) Synergism and polymorphism in mixed surfactant systems. Curr Opin Colloid Interface Sci 4(6):402–410CrossRefGoogle Scholar
  46. 46.
    Li X, Kunieda H (2003) Catanionic surfactants: microemulsion formation and solubilization. Curr Opin Colloid Interface Sci 8(4–5):327–336CrossRefGoogle Scholar
  47. 47.
    Zemb T, Dubois M (2003) Catanionic microcrystals: organic platelets, gigadalton “molecules”, or ionic solids? Aust J Chem 56(10):971CrossRefGoogle Scholar
  48. 48.
    Carrière D, Page M, Dubois M, Zemb T, Cölfen H, Meister A, Belloni L, Schönhoff M, Möhwald H (2007) Osmotic pressure in colloid science: clay dispersions, catanionics, polyelectrolyte complexes and polyelectrolyte multilayers. Colloids Surfaces A Physicochem Eng Asp 303(1–2):137–143CrossRefGoogle Scholar
  49. 49.
    Fameau A-L, Zemb T (2014) Self-assembly of fatty acids in the presence of amines and cationic components. Adv Colloid Interface Sci 207:43–64CrossRefGoogle Scholar
  50. 50.
    Vautrin C, Dubois M, Zemb T, Schmölzer S, Hoffmann H, Gradzielski M (2003) Chain melting in swollen catanionic bilayers. Colloids Surf A Physicochem Eng Asp 217(1–3):165–170CrossRefGoogle Scholar
  51. 51.
    Michina Y, Carrière D, Charpentier T, Brito R, Marques EF, Douliez J-P, Zemb T (2010) Absence of lateral phase segregation in fatty acid-based catanionic mixtures. J Phys Chem B 114(5):1932–1938CrossRefGoogle Scholar
  52. 52.
    Gradzielski M (2003) Vesicles and vesicle gels—structure and dynamics of formation. J Phys Condens Matter 15(19):R655–R697CrossRefGoogle Scholar
  53. 53.
    Brown W, Johansson K, Almgren M (1989) Threadlike micelles from cetyltrimethylammonium bromide in aqueous sodium naphthalenesulfonate solutions studied by static and dynamic light scattering. J Phys Chem 93(15):5888–5894CrossRefGoogle Scholar
  54. 54.
    Keiderling U, Wiedenmann A (1995) New SANS instrument at the BER II Reactor in Berlin, Germany. Phys B Condens Matter 213–214:895–897CrossRefGoogle Scholar
  55. 55.
    Horbaschek K, Hoffmann H, Hao J (2000) Classic L Α phases as opposed to vesicle phases in cationic − anionic surfactant mixtures. J Phys Chem B 104(13):2781–2784CrossRefGoogle Scholar
  56. 56.
    Hao J, Liu W, Xu G, Zheng L (2003) Vesicles from salt-free cationic and anionic surfactant solutions. Langmuir 19(26):10635–10640CrossRefGoogle Scholar
  57. 57.
    Abdel-Rahem R, Hoffmann H (2006) The distinction of viscoelastic phases from entangled wormlike micelles and of densely packed multilamellar vesicles on the basis of rheological measurements. Rheol Acta 45(6):781–792CrossRefGoogle Scholar
  58. 58.
    Vautrin C, Zemb T, Schneider M, Tanaka M (2004) Balance of pH and ionic strength influences on chain melting transition in catanionic vesicles. J Phys Chem B 108(23):7986–7991CrossRefGoogle Scholar
  59. 59.
    Matos MRA, Silva BFB, Marques EF (2013) Chain length mismatch and packing effects on the thermotropic phase behavior of salt-free catanionic surfactants. J Colloid Interface Sci 405:134–144CrossRefGoogle Scholar
  60. 60.
    Meister A, Dubois M, Belloni L, Zemb T (2003) Equation of state of self-assembled disklike and icosahedral crystallites in the dilute range. Langmuir 19(18):7259–7263CrossRefGoogle Scholar
  61. 61.
    Thomas CK, Olvera de la Cruz M (2013) Theory and simulations of crystalline control via salinity and pH in ionizable membranes. Soft Matter 9(2):429–434CrossRefGoogle Scholar
  62. 62.
    Carrière D, Belloni L, Demé B, Dubois M, Vautrin C, Meister A, Zemb T (2009) In-plane distribution in mixtures of cationic and anionic surfactants. Soft Matter 5(24):4983CrossRefGoogle Scholar
  63. 63.
    Maurer E, Belloni L, Zemb T, Carrière D (2007) Ion exchange in catanionic mixtures: from ion pair amphiphiles to surfactant mixtures. Langmuir 23(12):6554–6560CrossRefGoogle Scholar
  64. 64.
    Dubois M, Lizunov V, Meister A, Gulik-Krzywicki T, Verbavatz JM, Perez E, Zimmerberg J, Zemb T (2004) Shape control through molecular segregation in giant surfactant aggregates. Proc Natl Acad Sci U S A 101(42):15082–15087CrossRefGoogle Scholar
  65. 65.
    Dubois M, Belloni L, Zemb T, Demé B, Gulik-Krzywicki T (2000) Formation of rigid nanodiscs: edge formation and molecular separation. Prog Colloid Polym Sci 115:238–242CrossRefGoogle Scholar
  66. 66.
    Okamoto R, Onuki A (2011) Charged colloids in an aqueous mixture with a salt. Phys Rev E - Stat Nonlinear Soft Matter Phys 84(5):051401CrossRefGoogle Scholar
  67. 67.
    Onuki A, Okamoto R (2011) Selective solvation effects in phase separation in aqueous mixtures. Curr Opin Colloid Interface Sci 525–533Google Scholar
  68. 68.
    Kaler EW, Herrington KL, Murthy AK, Zasadzinski JA (1992) Phase behavior and structures of mixtures of anionic and cationic surfactants. J Phys Chem 96(16):6698–6707CrossRefGoogle Scholar
  69. 69.
    Arnould A, Perez AA, Gaillard C, Douliez J-P, Cousin F, Santiago LG, Zemb T, Anton M, Fameau A-L (2015) Self-assembly of myristic acid in the presence of choline hydroxide: effect of molar ratio and temperature. J Colloid Interface Sci 445:285–293CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Institut de Chimie Séparative de Marcoule (ICSM)Bagnols sur CèzeFrance
  2. 2.Stranski-Laboratorium für Physikalische und Theoretische Chemie, Institut für ChemieTechnische Universität BerlinBerlinGermany

Personalised recommendations