Advertisement

Colloid and Polymer Science

, Volume 293, Issue 12, pp 3563–3572 | Cite as

Synthesis and stabilization of Pt nanoparticles in core cross-linked micelles prepared from an amphiphilic diblock copolymer

  • Gökhan Kocak
  • Vural BütünEmail author
Original Contribution

Abstract

In this study, an amphiphilic poly(ethylene glycol)methyl ether-block-poly(glycidyl methacrylate) diblock copolymer (MPEG-b-PGMA) was synthesized via atom transfer radical polymerization (ATRP), and its micellar solution was prepared in acetone/water mixture. Core cross-linked (CCL) micelles were synthesized by cross-linking the epoxy functional group of poly(glycidyl methacrylate) block with ethylenediamine. These CCL micelles were used in the synthesis and stabilization of platinum nanoparticles (PtNPs) in aqueous media. Transmission electron microscopy (TEM) images showed that well-dispersed PtNPs with a diameter of around 5 nm were formed within the MPEG-b-PGMA spherical CCL micelles having 22.0 ± 3.0 nm diameters. The mean TEM diameter of the PtNPs is of the order of several nanometers, which is consistent with the plasmon absorption peaks observed at around 205 and 261 nm. The catalytic activity of CCL micelle-PtNP dispersion was also investigated in the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4. The results showed that the PtNPs exhibit a good catalytic activity toward reduction of p-nitrophenol. CCL micelle-stabilized PtNP dispersions were stable for long periods of time without changing properties at room temperature. CCL micelles found to be good hostage or stabilizer for the NPs in aqueous media.

Keywords

Core cross-linked micelle Diblock copolymer Catalytic activity Platinum nanoparticle Glycidyl methacrylate Nanoreactors 

Notes

Acknowledgments

We are grateful for the financial support of Eskisehir Osmangazi University (ESOGU). This work was supported by the Commission of Scientific Research Projects of ESOGU (Grant Numbers 201119006 and 201319C103). V.B. expresses his gratitude to the Turkish Academy of Sciences (TUBA) as an Associate Member for financial support.

Supplementary material

396_2015_3727_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1091 kb)

References

  1. 1.
    Henglein A (1989) Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89(8):1861–1873CrossRefGoogle Scholar
  2. 2.
    Lewis LN (1993) Chemical catalysis by colloids and clusters. Chem Rev 93(8):2693–2730CrossRefGoogle Scholar
  3. 3.
    Schmid G (1992) Large clusters and colloids—metals in the embryonic state. Chem Rev 92(8):1709–1727CrossRefGoogle Scholar
  4. 4.
    Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22(11):1179–1201CrossRefGoogle Scholar
  5. 5.
    Roucoux A, Schulz J, Patin H (2002) Reduced transition metal colloids: a novel family of reusable catalysts? Chem Rev 102(10):3757–3778PubMedCrossRefGoogle Scholar
  6. 6.
    Tran QH, Nguyen VQ, Le A-T (2013) Silver nanoparticles: synthesis, properties, toxicology, applications and perspectives. Adv Nat Sci Nanosci Nanotechnol 4(3):1–20Google Scholar
  7. 7.
    Bradley JS (2007) The chemistry of transition metal colloids. In: Clusters and colloids. Wiley-VCH Verlag GmbH, Weinheim, pp 459–544Google Scholar
  8. 8.
    Hamley IW (2003) Nanostructure fabrication using block copolymers. Nanotechnology 14(10):R39–R54CrossRefGoogle Scholar
  9. 9.
    Cohen RE (1999) Block copolymers as templates for functional materials. Curr Opin Solid State Mater Sci 4(6):587–590CrossRefGoogle Scholar
  10. 10.
    Forster S, Antonietti M (1998) Amphiphilic block copolymers in structure-controlled nanomaterial hybrids. Adv Mater 10(3):195–217CrossRefGoogle Scholar
  11. 11.
    Mohan YM, Premkumar T, Lee K, Geckeler KE (2006) Fabrication of silver nanoparticles in hydrogel networks. Macromol Rapid Commun 27(16):1346–1354CrossRefGoogle Scholar
  12. 12.
    Youk JH (2003) Preparation of gold nanoparticles on poly(methyl methacrylate) nanospheres with surface-grafted poly(allylamine). Polymer 44(18):5053–5056CrossRefGoogle Scholar
  13. 13.
    Ballauff M, Sharma G, Kempe R, Irrgang T, Talmon Y, Proch S (2005) Platinum and gold nanoparticles generated by in spherical polyelectrolyte brushes and their catalytic activity. Abstr Pap Am Chem Soc 230(2):56–57Google Scholar
  14. 14.
    Hirai H, Nakao Y, Toshima N (1979) Preparation of colloidal transition metals in polymers by reduction with alcohols or ethers. J Macromol Sci A Chem 13(6):727–750CrossRefGoogle Scholar
  15. 15.
    Guo LM, Nie JJ, Du BY, Peng ZQ, Tesche B, Kleinermanns K (2008) Thermoresponsive polymer-stabilized silver nanoparticles. J Colloid Interface Sci 319(1):175–181PubMedCrossRefGoogle Scholar
  16. 16.
    Heller W, Pugh TL (1960) “Steric” stabilization of colloidal solutions by adsorption of flexible macromolecules. J Polym Sci 47(149):203–217CrossRefGoogle Scholar
  17. 17.
    Du BY, Chen XJ, Zhao B, Mei AX, Wang Q, Xu JT, Fan ZQ (2010) Interfacial entrapment of noble metal nanoparticles and nanorods capped with amphiphilic multiblock copolymer at a selective liquid-liquid interface. Nanoscale 2(9):1684–1689PubMedCrossRefGoogle Scholar
  18. 18.
    Du BY, Mei AX, Tao PJ, Zhao B, Cao Z, Nie JJ, Xu JT, Fan ZQ (2009) Poly[N-isopropylacrylamide-co-3-(trimethoxysilyl)-propylmethacrylate] coated aqueous dispersed thermosensitive Fe3O4 nanoparticles. J Phys Chem C 113(23):10090–10096CrossRefGoogle Scholar
  19. 19.
    Du BY, Zhao B, Tao PJ, Yin KZ, Lei P, Wang Q (2008) Amphiphilic multiblock copolymer stabilized Au nanoparticles. Colloid Surf A 317(1-3):194–205CrossRefGoogle Scholar
  20. 20.
    Castonguay A, Kakkar AK (2010) Dendrimer templated construction of silver nanoparticles. Adv Colloid Interf Sci 160(1–2):76–87CrossRefGoogle Scholar
  21. 21.
    Clay RT, Cohen RE (1995) Synthesis of metal nanoclusters within microphase-separated diblock copolymers: a ‘universal’ approach. Supramol Sci 2(3–4):183–191CrossRefGoogle Scholar
  22. 22.
    Read ES, Armes SP (2007) Recent advances in shell cross-linked micelles. Chem Commun 29:3021–3035CrossRefGoogle Scholar
  23. 23.
    van Nostrum CF (2011) Covalently cross-linked amphiphilic block copolymer micelles. Soft Matter 7(7):3246–3259CrossRefGoogle Scholar
  24. 24.
    O’Reilly RK (2007) Spherical polymer micelles: nanosized reaction vessels? Philos Trans R Soc A 365(1861):2863–2878CrossRefGoogle Scholar
  25. 25.
    Bütün V, Wang XS, De Paz Báñez MV, Robinson KL, Billingham NC, Armes SP, Tuzar Z (2000) Synthesis of shell cross-linked micelles at high solids in aqueous media. Macromolecules 33(1):1–3CrossRefGoogle Scholar
  26. 26.
    Liu SY, Weaver JVM, Save M, Armes SP (2002) Synthesis of pH-responsive shell cross-linked micelles and their use as nanoreactors for the preparation of gold nanoparticles. Langmuir 18(22):8350–8357CrossRefGoogle Scholar
  27. 27.
    Sugihara S, Ito S, Irie S, Ikeda I (2010) Synthesis of thermoresponsive shell cross-linked micelles via living cationic polymerization and UV irradiation. Macromolecules 43(4):1753–1760CrossRefGoogle Scholar
  28. 28.
    Kim JS, Youk JH (2009) Encapsulation of nanomaterials within intermediary layer cross-linked micelles using a photo-cross-linking agent. Macromol Res 17(11):926–930CrossRefGoogle Scholar
  29. 29.
    Goto F, Ishihara K, Iwasaki Y, Katayama K, Enomoto R, Yusa S (2011) Thermo-responsive behavior of hybrid core cross-linked polymer micelles with biocompatible shells. Polymer 52(13):2810–2818CrossRefGoogle Scholar
  30. 30.
    Jin QA, Liu GY, Li JA (2010) Preparation of reversibly photo-cross-linked nanogels from pH-responsive block copolymers and use as nanoreactors for the synthesis of gold nanoparticles. Eur Polym J 46(11):2120–2128CrossRefGoogle Scholar
  31. 31.
    Sakurai H (2006) Amphiphilic polysilane-methacrylate block copolymers—formation and interesting properties. Proc Jpn Acad Ser B Phys Biol Sci 82(8):257–269PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Antonietti M, Wenz E, Bronstein L, Seregina M (1995) Synthesis and characterization of noble metal colloids in block copolymer micelles. Adv Mater 7(12):1000–1005CrossRefGoogle Scholar
  33. 33.
    Moffitt M, Mcmahon L, Pessel V, Eisenberg A (1995) Size control of nanoparticles in semiconductor-polymer composites.2. Control Via sizes of spherical ionic microdomains in styrene-based diblock ionomers. Chem Mater 7(6):1185–1192CrossRefGoogle Scholar
  34. 34.
    Mayer ABR, Mark JE (1997) Transition metal nanoparticles protected by amphiphilic block copolymers as tailored catalyst systems. Colloid Polym Sci 275(4):333–340CrossRefGoogle Scholar
  35. 35.
    Bronstein LH, Sidorov SN, Valetsky PM, Hartmann J, Colfen H, Antonietti M (1999) Induced micellization by interaction of poly(2-vinylpyridine)-block-poly(ethylene oxide) with metal compounds. Micelle characteristics and metal nanoparticle formation. Langmuir 15(19):6256–6262CrossRefGoogle Scholar
  36. 36.
    Spatz JP, Roescher A, Moller M (1996) Gold nanoparticles in micellar poly(styrene)-b-poly(ethylene oxide) films-size and interparticle distance control in monoparticulate films. Adv Mater 8(4):337–340CrossRefGoogle Scholar
  37. 37.
    Mossmer S, Spatz JP, Moller M, Aberle T, Schmidt J, Burchard W (2000) Solution behavior of poly(styrene)-block-poly(2-vinylpyridine micelles containing gold nanoparticles). Macromolecules 33(13):4791–4798CrossRefGoogle Scholar
  38. 38.
    Bronstein LM, Sidorov SN, Gourkova AY, Valetsky PM, Hartmann J, Breulmann M, Colfen H, Antonietti M (1998) Interaction of metal compounds with ‘double-hydrophilic’ block copolymers in aqueous medium and metal colloid formation. Inorg Chim Acta 280(1–2):348–354CrossRefGoogle Scholar
  39. 39.
    Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide-polyethyleneimine block copolymers. J Colloid Interface Sci 212(2):197–211PubMedCrossRefGoogle Scholar
  40. 40.
    Vamvakaki M, Papoutsakis L, Katsamanis V, Afchoudia T, Fragouli PG, Iatrou H, Hadjichristidis N, Armes SP, Sidorov S, Zhirov D, Zhirov V, Kostylev M, Bronstein LM, Anastasiadis SH (2005) Micellization in pH-sensitive amphiphilic block copolymers in aqueous media and the formation of metal nanoparticles. Faraday Discuss 128:129–147PubMedCrossRefGoogle Scholar
  41. 41.
    Bronstein LM, Vamvakaki M, Kostylev M, Katsamanis V, Stein B, Anastasiadis SH (2005) Transformations of poly(methoxy hexa(ethylene glycol) methacrylate)-b-(2-(diethylamino) ethyl methacrylate) block copolymer micelles upon metalation. Langmuir 21(21):9747–9755PubMedCrossRefGoogle Scholar
  42. 42.
    Azzam T, Bronstein L, Eisenberg A (2008) Water-soluble surface-anchored gold and palladium nanoparticles stabilized by exchange of low molecular weight ligands with biamphiphilic triblock copolymers. Langmuir 24(13):6521–6529PubMedCrossRefGoogle Scholar
  43. 43.
    Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4(8):3974–3983CrossRefGoogle Scholar
  44. 44.
    Zhang YH, Chen F, Zhuang JH, Tang Y, Wang DJ, Wang YJ, Dong AG, Ren N (2002) Synthesis of silver nanoparticles via electrochemical reduction on compact zeolite film modified electrodes. Chem Commun 23:2814–2815CrossRefGoogle Scholar
  45. 45.
    Zhu H, Liu QC, Chen YM (2007) Reactive block copolymer vesicles with an epoxy wall. Langmuir 23(2):790–794PubMedCrossRefGoogle Scholar
  46. 46.
    Wang J-S, Matyjaszewski K (1995) Controlled/“living” radical polymerization. Halogen atom transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 28(23):7901–7910CrossRefGoogle Scholar
  47. 47.
    Xu FJ, Chai MY, Li WB, Ping Y, Tang GP, Yang WT, Ma J, Liu FS (2010) Well-defined poly(2-hydroxyl-3-(2-hydroxyethylamino)propyl methacrylate) vectors with low toxicity and high gene transfection efficiency. Biomacromolecules 11(6):1437–1442PubMedCrossRefGoogle Scholar
  48. 48.
    Xu FJ, Zhu Y, Chai MY, Liu FS (2011) Comparison of ethanolamine/ethylenediamine-functionalized poly(glycidyl methacrylate) for efficient gene delivery. Acta Biomater 7(8):3131–3140PubMedCrossRefGoogle Scholar
  49. 49.
    Strube OI, Nothdurft L, Abisheva Z, Schmidt-Naake G (2012) New functional block copolymers via RAFT polymerization and polymer-analogous reaction. Macromol Chem Phys 213(12):1274–1284CrossRefGoogle Scholar
  50. 50.
    Gao H, Elsabahy M, Giger EV, Li DK, Prud’homme RE, Leroux JC (2010) Aminated linear and star-shape poly(glycerol methacrylate)s: synthesis and self-assembling properties. Biomacromolecules 11(4):889–895PubMedCrossRefGoogle Scholar
  51. 51.
    Gao H, Lu XY, Ma YA, Yang YW, Li JF, Wu GL, Wang YN, Fan YG, Ma JB (2011) Amino poly(glycerol methacrylate)s for oligonucleic acid delivery with enhanced transfection efficiency and low cytotoxicity. Soft Matter 7(19):9239–9247CrossRefGoogle Scholar
  52. 52.
    Luo C, Zhang Y, Zeng X, Zeng Y, Wang Y (2005) The role of poly(ethylene glycol) in the formation of silver nanoparticles. J Colloid Interface Sci 288(2):444–448PubMedCrossRefGoogle Scholar
  53. 53.
    Gharibshahi E, Saion E (2012) Influence of dose on particle size and optical properties of colloidal platinum nanoparticles. Int J Mol Sci 13(11):14723–14741PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan-silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19(1):1–9CrossRefGoogle Scholar
  55. 55.
    Huang X, Xiao Y, Zhang W, Lang M (2012) In-situ formation of silver nanoparticles stabilized by amphiphilic star-shaped copolymer and their catalytic application. Appl Surf Sci 258(7):2655–2660CrossRefGoogle Scholar
  56. 56.
    Pandey S, Mishra SB (2014) Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym 113:525–531PubMedCrossRefGoogle Scholar
  57. 57.
    Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R (2005) High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 21(26):12229–12234PubMedCrossRefGoogle Scholar
  58. 58.
    Barad J, Chakraborty M (2013) Reduction of 4-nitrophenol and 4-nitrobenzo 15 crown with colloidal platinum nanoparticles synthesized by microemulsion technique. Part Sci Technol 32(2):164–170CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Polymer Research Group, Department of Chemistry, Faculty of Arts and ScienceEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations