Colloid and Polymer Science

, Volume 293, Issue 10, pp 2967–2977 | Cite as

Elaboration of sponge-like particles for textile functionalization and skin penetration

  • Ahmad Bitar
  • Nadiah Zafar
  • Jean Pierre Valour
  • Géraldine Agusti
  • Hatem Fessi
  • Philippe Humbert
  • Sophie Robin
  • Céline Viennet
  • Nathalie Lévêque
  • Abdelhamid Elaissari
Original Contribution

Abstract

The preparation and characterization of active-loaded microparticles for cosmetic textile applications were studied in this work. The double emulsion diffusion/evaporation technique was served and the Eudragit® RS100 (ethyl acrylate and methyl methacrylate copolymers) was used as biodegradable polymer. Two actives molecules, vitamin E and Lauryl isoquinolinium bromide (LIB) were successfully loaded during the formulation. Obtained particles were spherical in shape with a little variable diameter about 1 μm and zeta potential of 55 mV. The cutaneous penetration of the particles was evaluated by dermal microdialysis, tape stripping, and punch-biopsy techniques from ex vivo human skin. LIB or vitamin E concentrations in the different layers of the skin were analyzed by high-performance liquid chromatography method. Finally, these particles were adsorbed onto a textile in optimized conditions. The scanning electron microscopy is used to confirm the total threads coverage by particles.

Keywords

Double emulsion Eudragit Microdialysis Vitamin E and textile 

References

  1. 1.
    Freiberg S, Zhu XX (2004) Polymer microspheres for controlled drug release. Int J Pharm 282:1–18. doi:10.1016/j.ijpharm.2004.04.013 CrossRefGoogle Scholar
  2. 2.
    Tran V-T, Benoît J-P, Venier-Julienne M-C (2011) Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy? Int J Pharm 407:1–11. doi:10.1016/j.ijpharm.2011.01.027 CrossRefGoogle Scholar
  3. 3.
    Uhrich KE, Cannizzaro SM, Langer RS, Shakesheff KM (1999) Polymeric systems for controlled drug release. Chem Rev 99:3181–3198. doi:10.1021/cr940351u CrossRefGoogle Scholar
  4. 4.
    Rosen M (2005) Delivery system handbook for personal care and cosmetic products: technology, applications and formulations. William AndrewGoogle Scholar
  5. 5.
    Khan MS, Vishakante GD, Bathool A (2012) Development and characterization of brimonidine tartrate loaded Eudragit nanosuspensions for ocular drug delivery. J Colloid Sci Biotechnol 1:122–128. doi:10.1166/jcsb.2012.1008 CrossRefGoogle Scholar
  6. 6.
    Pignatello R, Bucolo C, Puglisi G (2002) Ocular tolerability of Eudragit RS100® and RL100® nanosuspensions as carriers for ophthalmic controlled drug delivery. J Pharm Sci 91:2636–2641. doi:10.1002/jps.10227 CrossRefGoogle Scholar
  7. 7.
    Ibrahim HK, El-Leithy IS, Makky AA (2010) Mucoadhesive nanoparticles as carrier systems for prolonged ocular delivery of gatifloxacin/prednisolone bitherapy. Mol Pharm 7:576–585. doi:10.1021/mp900279c CrossRefGoogle Scholar
  8. 8.
    Sipos P, Csóka I, Srčič S, et al. (2005) Influence of preparation conditions on the properties of Eudragit microspheres produced by a double emulsion method. Drug Dev Res 64:41–54. doi:10.1002/ddr.10425 CrossRefGoogle Scholar
  9. 9.
    Das S, Suresh PK, Desmukh R (2010) Design of Eudragit RL 100 nanoparticles by nanoprecipitation method for ocular drug delivery. Nanomed Nanotechnol Biol Med 6:318–323. doi:10.1016/j.nano.2009.09.002 CrossRefGoogle Scholar
  10. 10.
    Chattopadhyay P, Huff R, Shekunov BY (2006) Drug encapsulation using supercritical fluid extraction of emulsions. J Pharm Sci 95:667–679. doi:10.1002/jps.20555 CrossRefGoogle Scholar
  11. 11.
    Esposito E, Roncarati R, Cortesi R, et al. (2000) Production of Eudragit microparticles by spray-drying technique: influence of experimental parameters on morphological and dimensional characteristics. Pharm Dev Technol 5:267–278. doi:10.1081/PDT-100100541 CrossRefGoogle Scholar
  12. 12.
    Ogawa Y, Yamamoto M, Okada H, et al. (1988) A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly(lactic/glycolic) acid. Chem Pharm Bull (Tokyo) 36:1095–1103CrossRefGoogle Scholar
  13. 13.
    Matos M, Gutiérrez G, Coca J, Pazos C (2014) Preparation of water-in-oil-in-water (W1/O/W2) double emulsions containing trans-resveratrol. Colloids Surf Physicochem Eng Asp 442:69–79. doi:10.1016/j.colsurfa.2013.05.065 CrossRefGoogle Scholar
  14. 14.
    Mary S, Muret P, Makki S, et al. (1999) A new technique for study of cutaneous biology, microdialysis. Ann Dermatol Venereol 126:66–70Google Scholar
  15. 15.
    Leveque N, Robin S, Makki S, et al. (2001) Iron concentrations in human dermis assessed by microdialysis associated with atomic absorption spectrometry. Biol Pharm Bull 24:10–13CrossRefGoogle Scholar
  16. 16.
    Tavakkol A, Nabi Z, Soliman N, Polefka TG (2004) Delivery of vitamin E to the skin by a novel liquid skin cleanser: comparison of topical versus oral supplementation. J Cosmet Sci 55:177–187Google Scholar
  17. 17.
    Cichewicz A, Pacleb C, Connors A, et al. (2013) Cutaneous delivery of α-tocopherol and lipoic acid using microemulsions: influence of composition and charge. J Pharm Pharmacol 65:817–826. doi:10.1111/jphp.12045 CrossRefGoogle Scholar
  18. 18.
    Dhananjeyan MR, Bykowski C, Trendel JA, et al. (2007) Simultaneous determination of procaine and para-aminobenzoic acid by LC-MS/MS method. J Chromatogr B Anal Technol Biomed Life Sci 847:224–230. doi:10.1016/j.jchromb.2006.10.004 CrossRefGoogle Scholar
  19. 19.
    Yang Y-Y, Chung T-S, Ping Ng N (2001) Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22:231–241. doi:10.1016/S0142-9612(00)00178-2 CrossRefGoogle Scholar
  20. 20.
    Crotts G, Park TG (1995) Preparation of porous and nonporous biodegradable polymeric hollow microspheres. J Control Release 35:91–105. doi:10.1016/0168-3659(95)00010-6 CrossRefGoogle Scholar
  21. 21.
    Meng FT, Ma GH, Qiu W, Su ZG (2003) W/O/W double emulsion technique using ethyl acetate as organic solvent: effects of its diffusion rate on the characteristics of microparticles. J Control Release 91:407–416. doi:10.1016/S0168-3659(03)00273-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ahmad Bitar
    • 1
  • Nadiah Zafar
    • 1
  • Jean Pierre Valour
    • 1
  • Géraldine Agusti
    • 1
  • Hatem Fessi
    • 1
  • Philippe Humbert
    • 2
  • Sophie Robin
    • 2
  • Céline Viennet
    • 2
  • Nathalie Lévêque
    • 3
  • Abdelhamid Elaissari
    • 1
  1. 1.CNRS, UMR 5007, LAGEP-CPEUniversity Lyon1 VilleurbanneVilleurbanneFrance
  2. 2.Laboratory of Engineering and Cutaneous Biology, INSERM UMR 1098Medicine and Pharmaceutical UniversityBesançonFrance
  3. 3.LETIAM, EA 4041, IUT d’OrsayUniversité Paris Sud 11OrsayFrance

Personalised recommendations