Colloid and Polymer Science

, Volume 293, Issue 10, pp 2763–2769 | Cite as

Thermo-sensitive colloidal crystals composed of monodisperse colloidal silica- and poly(N-isopropyl acrylamide) gel spheres

  • Daisuke Suzuki
  • Kiyoshi Shibata
  • Akira Tsuchida
  • Tsuneo Okubo
Original Contribution


Thermo-sensitive colloidal crystals were prepared simply and conveniently by mixing of colloidal silica spheres with a series of thermo-sensitive gel spheres, poly (N-isopropyl acrylamide) (pNIPAm, 225~1500 nm in hydrodynamic diameter, 0.5~5 mol% in degree of cross-linking and at 20~45 °C) in the deionized aqueous suspension. The thermo-reversible change in the lattice spacing of colloidal crystals of monodispersed silica spheres (CS83, 103 nm in diameter) depends on the size of the admixed pNIPAm. For gel spheres with similar or less than that of the silica spheres, the lattice spacing decreased with rising temperature. On the other hand, the spacing increased with temperature for the mixtures with pNIPAm spheres of larger than the size of the silica spheres. A mechanism, which is able to explain properly the several experiments including the present work, is proposed, i.e., balancing between the weak adsorption and segregation effects of silica with gel spheres.


Thermo-sensitive colloidal crystal Thermo-sensitive hydrogel spheres Colloidal silica spheres Poly (N-isopropyl acrylamide) Adsorption Segregation 



D.S. and A.T. from Japan Society for the promotion of Science for Scientific Research (B) are highly appreciated. D.S. also acknowledges Grant-in-Aid for Young Scientists (A) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (22685024).


  1. 1.
    Vanderhoff W, van de Hul HJ, Tausk RJM, Overbeek JTG (1970) The preparation of monodisperse latexes with well characterized surfaces. In: Goldfinger G (ed) Clean surfaces: their preparation and characterization for interfacial studies. Dekker, New York, pp. 15–44Google Scholar
  2. 2.
    Hiltner PA, Papir YS, Krieger IM (1971) Diffraction of light by nonaqueous ordered suspensions. J Phys Chem 75:1881–1886CrossRefGoogle Scholar
  3. 3.
    Kose A, Ozaki M, Takano K, Kobayashi Y, Hachisu S (1973) Direct observation of ordered latex suspension by metallurgical microscope. J Colloid Interface Sci 44:330–338CrossRefGoogle Scholar
  4. 4.
    Williams R, Crandall RS, Wojtowicz PJ (1976) Melting of crystalline suspensions of polystyrene spheres. Phys Rev Lett 37:348–351CrossRefGoogle Scholar
  5. 5.
    Mitaku S, Ohtsuki T, Enari K, Kishimoto A, Okano K (1978) Studies of ordered monodisperse polystyrene latexes. 1. Shear ultrasonic measurements. Jpn J Appl Phys 17:305–313CrossRefGoogle Scholar
  6. 6.
    Lindsay HM, Chaikin PM (1982) Elastic properties of colloidal crystals and glasses. J Chem Phys 76:3774–3781CrossRefGoogle Scholar
  7. 7.
    Pieranski P (1983) Colloidal crystals. Contemp Phys 24:25–73CrossRefGoogle Scholar
  8. 8.
    Ottewill RH (1985) Dispersed systems-recent developments. Ber Bunsenges Phys Chem 89:517–525CrossRefGoogle Scholar
  9. 9.
    Aastuen DJW, Clark NA, Cotter LK, Ackerson BJ (1986) Nucleation and growth of colloidal crystals. Phys Rev Lett 57:1733–1736CrossRefGoogle Scholar
  10. 10.
    Pusey PN, van Megen W (1986) Phase behavior of concentrated suspensions of nearly hard colloidal spheres. Nature 320:340–342CrossRefGoogle Scholar
  11. 11.
    Okubo T (1988) Extraordinary behavior in the structural properties of colloidal macrions in deionized suspension and the importance of the debye-screening length. Acc Chem Res 21:281–286CrossRefGoogle Scholar
  12. 12.
    Sood AK (1991) Structural ordering in colloidal suspensions. Solid State Phys 45:1–73Google Scholar
  13. 13.
    Okubo T (1988) Time-resolved analysis of a crystal-like structure-forming process of a monodisperse polystyrene sphere as studied by rapid-scanning spectrophotometry. J Chem Soc Faraday Trans 1(84):1163–1169CrossRefGoogle Scholar
  14. 14.
    Okubo T (1993) Polymer colloidal crystals. Prog Polym Sci 18:481–517CrossRefGoogle Scholar
  15. 15.
    Lowen H, Palberg T, Simon R (1993) Dynamical criterion for freezing of colloidal liquids. Phys Rev Lett 70:1557–1560CrossRefGoogle Scholar
  16. 16.
    Okubo T (1994) Phase diagram of ionic colloidal crystals. In: Macro-ion characterization. From dilute solutions to complex fluids. ACS Symp Ser 548. ACS Washington, DC, pp364-380Google Scholar
  17. 17.
    Okubo T, Tsuchia A (2002) Spectroscopy of giant colloidal crystals. Forma 17:141–153Google Scholar
  18. 18.
    Okubo T (2002) Crystalline colloids. Encyclopedia of Surface and Colloid Science. Marcell Dekker, New York, In, pp. 1300–1309Google Scholar
  19. 19.
    Okubo T (2005) Colloidal crystal. In: Kinoshita S, Yoshioka S (eds) Structural colors in biological systems. Osaka Univ Press, Osaka, pp. 267–286Google Scholar
  20. 20.
    Okubo T (2008) Colloidal crystallization as compared with polymer crystallization. Polym J 40:882–890CrossRefGoogle Scholar
  21. 21.
    Russel WB (1990) On the dynamics of the disorder–order transition. Phase Transit 21:127–137CrossRefGoogle Scholar
  22. 22.
    Dhont JKG, Smits C, Lekkerkerker HNW (1992) A time-resolved static light scattering study on nucleation and crystallization in a colloidal system. J Colloid Interface Sci 152:386–401CrossRefGoogle Scholar
  23. 23.
    Verhaeghe NAM, van Blaaderen A (1994) Dispersions of rhodamin labeled silica spheres: synthesis, characterization and fluorescence conforcal scanning laser microscopy. Langmuir 10:1427–1438CrossRefGoogle Scholar
  24. 24.
    Butler S, Harrowell P (1995) Kinetics of crystallization in a shearing colloidal suspension. Phys Rev E 52:6424–6430CrossRefGoogle Scholar
  25. 25.
    Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62CrossRefGoogle Scholar
  26. 26.
    Shibayama M (1998) Spatial inhomogeneity and dynamic fluctuations of polymer gels. Macromol Chem Phys 199:1–30CrossRefGoogle Scholar
  27. 27.
    Holtz JH, Asher SA (1997) Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature 389:829–832CrossRefGoogle Scholar
  28. 28.
    Pelton R (2000) Temperature-sensitive aqueous microgels. Adv Colloid Interf Sci 85:1–33CrossRefGoogle Scholar
  29. 29.
    Xia Y, Cates B, Yin Y, Lu Y (2000) Monodispersed colloidal spheres: old materials with new applications. Adv Mater 12:693–713CrossRefGoogle Scholar
  30. 30.
    Hellweg T, Dewhurst CD, Bruckner E, Kratz K, Eimer W (2000) Colloidal crystals made of poly(N-isopropylacrylamide) microgel particles. Colloid Polym Sci 278:972–978CrossRefGoogle Scholar
  31. 31.
    Debord JD, Lyon LA (2000) Thermoresponsive photonic crystals. J Phys Chem B 104:6327–6331CrossRefGoogle Scholar
  32. 32.
    Xia Y (2001) Photonic crystals. Adv Mater 13:369CrossRefGoogle Scholar
  33. 33.
    Gao J, Hu Z (2002) Optical properties of N-isopropyl acrylamide microgel spheres in water. Langmuir 18:1360–1367CrossRefGoogle Scholar
  34. 34.
    Okubo T, Hase H, Kimura H, Kokufuta E (2002) Thermo-sensitive colloidal crystals of silica spheres in the presence of gel spheres of poly(N-isopropyl acrylamide). Langmuir 18:6783–6788CrossRefGoogle Scholar
  35. 35.
    Okubo T, Mizutani T, Okamoto J, Kimura K, Tsuchida A, Tauer K, Khrenov V, Kawaguchi H, Tsuji S (2006) Thermo-sensitive colloidal crystals in the presence of large spheres with poly(N-isopropyl acrylamide) shells. Colloid Polym Sci 285:351–358CrossRefGoogle Scholar
  36. 36.
    Crassous JJ, Ballauff M, Drechsler M, Schmidt J, Talmon Y (2006) Imaging the volume transition in thermosensitive core-shell particles by cryo-transmission electron microscopy. Langmuir 22:2403–2406CrossRefGoogle Scholar
  37. 37.
    Crassous JJ, Wittemann A, Siebenburger M, Schrinner M, Drechsler M, Ballauff M (2008) Direct imaging of temperature-sensitive core-shell latex by cryogenic transmission electron microscopy. Colloid Polym Sci 286:805–812CrossRefGoogle Scholar
  38. 38.
    Crassous JJ, Rochette CN, Wittemann A, Schrinner M, Ballauff M (2008) Quantitative analysis of polymer colloids by cryo-transmission electron microscopy. Langmuir 25:7862–7871CrossRefGoogle Scholar
  39. 39.
    Suzuki D, Horigome K, Yamagata T, Shibata K, Tsuchida A, Okubo T (2011) Colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). influence of degree of cross-linking of the gels. Colloid Polym Sci 289:1799–1808CrossRefGoogle Scholar
  40. 40.
    Okubo T, Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A (2011) Colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide) with low degree of cross-linking. Colloid Polym Sci 289:1273–1281CrossRefGoogle Scholar
  41. 41.
    Suzuki D, Yamagata T, Horigome K, Shibata K, Tsuchida A, Okubo T (2012) Colloidal crystallization of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). influence of gel size. Colloid Polym Sci 290:107–117CrossRefGoogle Scholar
  42. 42.
    Okubo T, Suzuki D, Tsuchida A (2012) Drying dissipative structures of thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). influence of gel size. Colloid Polym Sci 290:1901–1911CrossRefGoogle Scholar
  43. 43.
    Okubo T (1986) Ordered solution structure of a monodispersed polystyrene latex as studied by the reflection spectrum method. J Chem Soc Faraday Trans 1(82):3163–3173CrossRefGoogle Scholar
  44. 44.
    Hachisu S, Kose A, Kobayashi Y, Takano K (1976) Segregation phenomena in monodisperse colloids. J Colloid Interface Sci 55:499–509CrossRefGoogle Scholar
  45. 45.
    Williams JC (1976) The segregation of particulate materials. A review. Powder Technol 15:245–251CrossRefGoogle Scholar
  46. 46.
    Rosato AD, Stradburg KJ, Prinz F, Swendsen RH (1987) Why the brazil nuts are on top: size segregation of particulate matter by shaking. Phys Rev Lett 58:1038–1040CrossRefGoogle Scholar
  47. 47.
    Vanell L, Rosato AD, Dave RN (1997) Rise-time regimes of a large sphere in vibrated bulk solids. Phys Rev Lett 78:1255–1258CrossRefGoogle Scholar
  48. 48.
    Okubo T, Tsuchida A, Okuda T, Fujitsuna K, Ishikawa M, Morita T, Toda T (1999) Kinetic analysis of colloidal crystallization in microgravity-aircraft experiments. Colloids Surf A 153:515–524(missprinting in part); A160:311–320CrossRefGoogle Scholar
  49. 49.
    Okubo T, Tsuchida A, Takahashi K, Taguchi K, Ishikawa M (2000) Kinetics of colloidal alloy crystallization of binary mixtures of monodispersed polystyrene and/or colloidal silica spheres having different sizes and densities in microgravity using aircraft. Colloid Polym Sci 278:202–210CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daisuke Suzuki
    • 1
    • 2
  • Kiyoshi Shibata
    • 3
  • Akira Tsuchida
    • 3
  • Tsuneo Okubo
    • 4
  1. 1.Division of Smart TextileGraduate School of Textile Science & TechnologyUedaJapan
  2. 2.Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge ResearchShinshu UniversityUedaJapan
  3. 3.Department of Applied ChemistryGifu UniversityGifuJapan
  4. 4.Institute for Colloidal OrganizationUjiJapan

Personalised recommendations