Colloid and Polymer Science

, Volume 293, Issue 6, pp 1799–1807 | Cite as

Synthesis of superhydrophobic fluorinated polystyrene microspheres via distillation precipitation polymerization

  • Dongwei Zhang
  • Jiawei Liu
  • Tuanwei Liu
  • Xinlin Yang
Original Contribution

Abstract

Superhydrophobic fluorinated polystyrene microspheres were prepared by distillation precipitation polymerization of 4-fluorostyrene (FSt), styrene (St), with divinylbenzene (DVB) as cross-linker in acetonitrile in the absence of any stabilizer. Both the fluorine contents and sizes of the polymeric microspheres were tuned via altering the feed ratio of the fluorinated monomers for polymerization. The films via casting the suspension with fluorinated microspheres exhibited a superhydrophobic behavior with contact angles larger than 150°. The resultant microspheres were characterized by transmission electron microscopy (TEM), Fourier-transform infrared spectrometry (FTIR), X-ray photoelectron spectroscopy (XPS), ion chromatography, and contact angle system.

Keywords

Fluorinated polymer microsphere Superhydrophobic Distillation precipitation polymerization 

References

  1. 1.
    Afzal S, Daoud WA, Langford SJ (2014) Superhydrophobic and photo-catalytic self-cleaning. J Mater Chem A 2:18005–18011CrossRefGoogle Scholar
  2. 2.
    Li XY, He JH (2012) In situ assembly of raspberry- and mulberry-like silica nanospheres toward antireflective and antifogging coatings. ACS Appl Mater Interfaces 4:2204–2211CrossRefGoogle Scholar
  3. 3.
    Bixler GD, Thesis A, Bhushan B, Lee SC (2014) Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings. J Colloid Interface Sci 419:114–133CrossRefGoogle Scholar
  4. 4.
    Sunny S, Vogel N, Howell C, Vu TL, Aizenberg J (2014) Lubricant-infused nanoparticulate coatings assembled by layer-by-layer deposition. Adv Funct Mater 24:6658–6667CrossRefGoogle Scholar
  5. 5.
    Drame A, Darmanin T, Dieng SY, de Givenchy ET, Guittard C (2014) Superhydrophobic and oleophobic surfaces containing wrinkles and nanoparticles of PEDOT with two short fluorinated chains. RSC Adv 4:10935–10943CrossRefGoogle Scholar
  6. 6.
    Nuraje N, Khan WS, Lei Y, Ceylan M, Asmatulu R (2013) Superhydrophobic electrospun nanofibers. J Mater Chem A 1:1929–1946CrossRefGoogle Scholar
  7. 7.
    Lo CW, Wang CC, Lu MC (2014) Spatial control of heterogeneous nucleation on the superhydrophobic nanowire array. Adv Funct Mater 24:1211–1217CrossRefGoogle Scholar
  8. 8.
    Wang JY, Yang XL (2008) Synthesis of core-corona polymer hybrids with raspberry-like structure via heterocoagulated pyridinium reaction. Langmuir 24:3358–3364CrossRefGoogle Scholar
  9. 9.
    Imbesi PM, Finlay JA, Aldred N, Eller MJ, Felder SE, Pollack KA, Lonnecker AT, Raymond JE, Mackay ME, Schweikert EA (2012) Targeted surface nanocomplexity: two-dimensional control over the composition, physical properties and anti-biofouling performance of hyperbranched fluoropolymer-poly(ethylene glycol) amphiphilic crosslinked networks. Polym Chem 3:3121–3131CrossRefGoogle Scholar
  10. 10.
    Krawzyk H, Persson T, Andersson A, Jonsson AS (2008) Isolation of hemicelluloses from barley husks. Food Bioprod Process 86:31–36CrossRefGoogle Scholar
  11. 11.
    Imbesi PM, Gohad NV, Eller MJ, Orihuela B, Rittschof D, Schweikert EA, Mount AS, Wooley KL (2012) Noradrenaline-functionalized hyperbranched fluoropolymer-poly(ethylene glycol) cross-linked networks as dual-mode anti-biofouling coatings. ACS Nano 6:1503–1512CrossRefGoogle Scholar
  12. 12.
    Detty MR, Ciriminna R, Bright FV, Pagliaro M (2014) Environmentally benign sol–gel antifouling and foul-releasing coatings. Acc Chem Res 47:678–687CrossRefGoogle Scholar
  13. 13.
    Poly J, Ibarboure E, Rodriguez-Hernandez J, Taton D, Papon E (2010) Reinforcing the hydrophobicity of polymeric surfaces from fluorinated star polymers and nanogels. Macromolecules 43:1299–1308CrossRefGoogle Scholar
  14. 14.
    de Leon AS, del Campo A, Fernandez-Garda M, Rodriguez-Hernandez J, Munoz-Bonila A (2012) Hierarchically structured multifunctional porous interfaces through water templated self-assembly of ternary systems. Langmuir 28:9778–9787CrossRefGoogle Scholar
  15. 15.
    Hu YD, Wang JY, Wang H, Wang Q, Zhu JT, Yang YJ (2012) Microfluidic fabrication and thermoreversible response of core/shell photonic crystalline microspheres based on deformable nanogels. Langmuir 28:17186–17192CrossRefGoogle Scholar
  16. 16.
    Chang CJ, Lin CK, Chen CC, Chen CY, Kuo CH (2011) Gas sensors with porous three-dimensional framework using TiO2/polymer double-shell hollow microsphere. Thin Solid Films 520:1546–1553CrossRefGoogle Scholar
  17. 17.
    Jiang L, Zhao Y, Zhai JA (2014) Lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed 43:4338–4341CrossRefGoogle Scholar
  18. 18.
    Gao JF, Wong JSP, Hu MJ, Li W, Li RKY (2014) Facile preparation of hierarchically porous polymer microspheres for superhydrophobic coating. Nanoscale 6:1056–1063CrossRefGoogle Scholar
  19. 19.
    Zhang JL, Xue LJ, Han YC (2005) Fabrication gradient surfaces by changing polystyrene microsphere topography. Langmuir 21:5–8CrossRefGoogle Scholar
  20. 20.
    Gu ZZ, Uetsuka H, Takahashi K, Nakajima R, Onishi H, Fujishima A, Sato O (2003) Structural color and the lotus effect. Angew Chem Int Ed 42:894–897CrossRefGoogle Scholar
  21. 21.
    Shiu JY, Kuo CW, Chen PL, Mou CY (2004) Fabrication of tunable superhydrophobic surfaces by nanosphere lithography. Chem Mater 16:561–564CrossRefGoogle Scholar
  22. 22.
    Han JT, Zheng YL, Cho JH, Xu XR, Cho K (2005) Stable superhydrophobic organic-inorganic hybrid films by electrostatic self-assembly. J Phys Chem B 109:20773–20778CrossRefGoogle Scholar
  23. 23.
    Zhai L, Cebeci F, Cohen RE, Rubner MF (2004) Stable superhydrophobic coatings from polyelectrolyte multilayers. Nano Lett 4:1349–1353CrossRefGoogle Scholar
  24. 24.
    Han JT, Jang Y, Yun D, Lee J, Park H, Song SH, Ban DY, Cho K (2005) Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development. J Mater Chem 15:3089–3092CrossRefGoogle Scholar
  25. 25.
    Wei W, Huang XB, Zhao XL, Zhang P, Tang XZ (2010) A rapid and efficient strategy for preparation of super-hydrophobic surface with cross-linked cyclotriphosphazene/6F-bisphenol A copolymer microspheres. Chem Commun 46:487–489CrossRefGoogle Scholar
  26. 26.
    Bunoz-Bonilla A, Bousquet A, Ibarboure E, Papon E, Labrugere C, Rodriguez-Herandez J (2010) Fabrication and superhydrophobic behavior of fluorinated microspheres. Langmuir 26:16775–16781CrossRefGoogle Scholar
  27. 27.
    Bai F, Yang XL, Huang WQ (2004) Synthesis of narrow or monodisperse poly(divinylbenzene) microspheres by distillation–precipitation polymerization. Macromolecules 37:9746–9752CrossRefGoogle Scholar
  28. 28.
    Bai F, Yang XL, Huang WQ (2006) Preparation of narrow or monodisperse poly(ethyleneglycol dimethacrylate) microspheres by distillation–precipitation polymerization. Eur Polm J 42:2088–2097CrossRefGoogle Scholar
  29. 29.
    Rudin A (1982) The elements of polymer science and engineering. Academic, New YorkGoogle Scholar
  30. 30.
    Liu GY, Yang XL, Wang YM (2007) Preparation of monodisperse hydrophilic polymer microspheres with N, N′-methylenediacrylamide as crosslinker by distillation precipitation polymerization. Polym Int 56:905–913CrossRefGoogle Scholar
  31. 31.
    Lu XY, Huang D, Yang XL, Huang WQ (2006) Preparation of narrow or monodisperse polymer microspheres with cyano group by distillation–precipitation polymerization. Polym Bull 54:171–178CrossRefGoogle Scholar
  32. 32.
    Song T, Zhou MJ, Liu W, Bian GM, Qi YL, Bai F, Yang XL (2015) Preparation of polymer microspheres with reactive epoxy group and amino groups as stabilizers for gold nanocolloids with recoverable catalysis. Colloid Polym Sci 293:187–197CrossRefGoogle Scholar
  33. 33.
    Rodriguez-Herandez J, Bunoz-Bonilla A, Bousquet A, Ibarboure E, Papon E (2010) Environmentally responsive particles: from superhydrophobic particle films to water-dispersible microspheres. Langmuir 26:18617–18620CrossRefGoogle Scholar
  34. 34.
    Bai F, Yang XL, Li R, Huang B, Huang WQ (2006) Monodisperse hydrophilic polymer microspheres having carboxylic acid groups prepared by distillation precipitation polymerization. Polymer 47:5775–5784CrossRefGoogle Scholar
  35. 35.
    Qi DL, Bai F, Yang XL, Huang WQ (2006) Synthesis of core–shell polymer microspheres by two-stage distillation–precipitation polymerization. Eur Polym J 42:2088–2097CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Dongwei Zhang
    • 1
  • Jiawei Liu
    • 1
  • Tuanwei Liu
    • 1
  • Xinlin Yang
    • 1
  1. 1.Key Laboratory of Functional Polymer Materials, Ministry of Education, Institute of Polymer Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)Nankai UniversityTianjinPeople’s Republic of China

Personalised recommendations