Advertisement

Colloid and Polymer Science

, Volume 293, Issue 5, pp 1545–1551 | Cite as

Polyethylene-based composites containing high concentration of quantum dots

  • Alexey Bobrovsky
  • Valery Shibaev
  • Galina Elyashevitch
  • Konstantin Mochalov
  • Vladimir Oleynikov
Short Communication

Abstract

A simple approach of preparation of advanced fluorescent polyethylene (PE) composites containing the high concentration of CdSe/ZnS quantum dots (QDs) was elaborated. The method is based on the infiltration of concentrated solution of QDs in octadecene into the films of porous stretched PE. A developed technique allowed one to introduce high concentration of QDs (15 wt%) into the polymer films. The composite films possess very bright fluorescence, high thermal stability, flexibility, and good mechanical properties. An annealing of the films enables to collapse porous structure and obtain stable, flexible, highly fluorescent, and transparent composite films. The developed approach enables to prepare materials promising for applications in optoelectronics and photonics.

Keywords

Polymer composites CdSe/ZnS quantum dots Porous polyethylene Fluorescence 

Notes

Acknowledgments

This research was supported by the Russian Foundation of Fundamental Research (13-03-00219 and 13-03-12071; preparation of PE films and PE-QDs composites), Russian Science Foundation (14-13-00379; study of optical and fluorescent properties of composites), and Ministry of Higher Education and Science of the Russian Federation (grant no. 14.575.21.0065 ID RFMEFI57514X0065). The authors are very thankful to Dr. M. Artemiev for the QD synthesis.

References

  1. 1.
    Jabbour GE, Sariciftci NS (2014) Electronic, optical and optoelectronic polymers and oligomers. Cambridge University PressGoogle Scholar
  2. 2.
    Konstantatos G, Sargent EH (2013) Colloidal quantum dot optoelectronics and photovoltaics. Cambridge University PressGoogle Scholar
  3. 3.
    Rogach A (2008) Semiconductor nanocrystal quantum dots: synthesis, assembly, spectroscopy and applications. Springer, BerlinCrossRefGoogle Scholar
  4. 4.
    Caruso F (2006) Colloids and colloid assemblies: synthesis, modification, organization and utilization of colloid particles. WileyGoogle Scholar
  5. 5.
    Meinardi F, Colombo A, Velizhanin KA, Simonutti R, Lorenzon M, Beverina L, Viswanatha R, Klimov VI, Brovelli S (2014) Large area luminescent solar concentrators based on “Stokes-shift-engineered” nanocrystals in mass polymerized polymethylmethacrylate matrix. Nat Photonics 8:392–399CrossRefGoogle Scholar
  6. 6.
    Pang L, Shen Y, Tetz K, Fainman Y (2005) MMA quantum dots composites fabricated via use of pre-Polymerization. Opt Express 13:44–49CrossRefGoogle Scholar
  7. 7.
    Min S-Y, Bang J, Park J, Lee C-L, Lee S, Park J-J, Jeong U, Kim S, Lee T-W (2014) Electrospun polymer/quantum dot composite fibers as down conversion phosphor layers for white light-emitting diodes. RSC Adv 4:11585–11589CrossRefGoogle Scholar
  8. 8.
    Tamborra M, Striccoli M, Comparelli R, Curri ML, Petrella A, Agostiano A (2004) Optical properties of hybrid composites based on highly luminescent CdS nanocrystals in polymer. Nanotechnology 15:S240–S244CrossRefGoogle Scholar
  9. 9.
    Cho Y-S, Kim Y-K, Kim SJ, Yi G-R (2013) Quantum-dot-embedded colloidal polymeric particles for white light-emitting-diode with high color rendering index. Mater Express 3:217–230CrossRefGoogle Scholar
  10. 10.
    Wood V, Panzer MJ, Chen J, Bradley MS, Halpert JE, Bawendi MG, Bulovic V (2009) Inkjet-printed quantum dot-polymer composites for full-color AC-driven displays. Adv Mater 21:2151–2155CrossRefGoogle Scholar
  11. 11.
    Weaver J, Zakeri R, Aouadi S, Kohli P (2009) Synthesis and characterization of quantum dots-polymer composites. J Mater Chem 19:3198–3206CrossRefGoogle Scholar
  12. 12.
    Song H, Lee S (2007) Photoluminescent (CdSe)ZnS quantum dot-polymethylmethacrylate polymer composite thin films in the visible spectral range. Nanotechnology 18:055402CrossRefGoogle Scholar
  13. 13.
    Cho S, Kwag J, Jeong S, Baek Y, Kim S (2013) Highly fluorescent and stable quantum dot-polymer-layered double hydroxide composites. Chem Mater 25:1071–1077CrossRefGoogle Scholar
  14. 14.
    He X, Tan L, Wu X, Yan C, Chen D, Meng X, Tang F (2012) Electrospun quantum dots/polymer composite porous fibers for turn-on fluorescent detection of lactate dehydrogenase. J Mater Chem 22:18471–18478CrossRefGoogle Scholar
  15. 15.
    Kim JH, Song WS, Yang H (2013) Color-converting bilayered composite plate of quantum-do-polymer for high-color rendering white light-emitting diode. Opt Lett 38:2885–2888CrossRefGoogle Scholar
  16. 16.
    Shi Y, Ma Z, Cui N, Liu Y, Hou X, Du W, Liu L, Gangsheng T (2014) In situ preparation of fluorescent CdTe quantum dots with small thiols and hyperbranched polymers as co-stabilizers. Nanoscale Res Lett 9:121–126CrossRefGoogle Scholar
  17. 17.
    Thorkelsson K, Nelson JH, Alivisatos AP, Xu T (2013) End-to-end alignment of nanorods in thin films. Nano Lett 13:4908–4913CrossRefGoogle Scholar
  18. 18.
    Han S, Li X, Wang Y, Sub C (2014) A core-shell Fe3O4 nanoparticle-CdTe quantum dot-molecularly imprinted polymer composite for recognition and separation of 4-nonylphenol. Anal Methods 6:2855–2861CrossRefGoogle Scholar
  19. 19.
    Zhou Y, Qu Z, Zeng Y, Zhou T, Shi G (2014) A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosensors Bioelectr 52:317–323CrossRefGoogle Scholar
  20. 20.
    Lawrence WG, Thacker S, Palamakumbura S, Riley KJ, Nagarkar VV (2012) Quantum dot-organic polymer composite materials for radiation detection and imaging. Nuclear Science, IEEE Transactions 59:215–221CrossRefGoogle Scholar
  21. 21.
    Yang G, Shen P, Tan K, Xia Y (2014) Quantum dots and polymer hybrid composites: new insights into fluorescence switch and turn-on anion sensing. Microchim Acta 181:607–613CrossRefGoogle Scholar
  22. 22.
    Bobrovsky A, Mochalov K, Oleinikov V, Sukhanova A, Prudnikau A, Artemyev M, Shibaev V, Nabiev I (2012) Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots. Adv Mater 24:6216–6222CrossRefGoogle Scholar
  23. 23.
    Mochalov K, Efimov A, Bobrovsky A, Agapov I, Chistyakov A, Oleinikov V, Sukhanova A, Nabiev I (2013) Combined scanning probe nanotomography and optical microspectroscopy: a correlative technique for 3D characterization of nanomaterials. ACS Nano 7:8953–8962CrossRefGoogle Scholar
  24. 24.
    Bobrovsky A, Samokhvalov P, Shibaev V (2014) An effective method for preparation of stable LC composites with high concentration of quantum dots. Adv Opt Mater. doi: 10.1002/adom.201400215 Google Scholar
  25. 25.
    Silverstein MS, Cameron NR, Hillmyer MA (2011) Porous Polymers. WileyGoogle Scholar
  26. 26.
    Song Q, Cao S, Pritchard RH, Ghalei B, Al-Muhtase SA, Terentjev EM, Cheetham AK, Sivaniah E (2014) Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes. Nature Commun. doi: 10.1038/ncomms5813 Google Scholar
  27. 27.
    El’yashevich GK, Kuryndin IS, Lavrentiev VK, Bobrovsky A, Bukǒsek V (2012) Porous structure, permeability and mechanical properties of microporous films of polyolefines. Solid State Physics (Russian) 54:1787–1796Google Scholar
  28. 28.
    Bobrovsky A, Shibaev V, Elyashevitch G, Shimkin A, Shirinyan V (2007) Photooptical properties of polymer composites based on stretched porous polyethylene filled with photoactive cholesteric liquid crystal. Liq Cryst 34:791–797CrossRefGoogle Scholar
  29. 29.
    Bobrovsky A, Shibaev V, Elyashevitch G (2008) Photopatternable fluorescent polymer composites based on stretched porous polyethylene and photopolymerizable liquid crystal mixture. J Mater Chem 18:691–695CrossRefGoogle Scholar
  30. 30.
    Bobrovsky A, Shibaev V, Elyashevitch G, Rosova E, Shimkin A, Shirinyan V, Bubnov A, Kaspar M, Hamplova V, Glogarova M (2008) New photosensitive polymer composites based on oriented porous polyethylene filled with azobenzene-containing LC mixture: reversible photomodulation of dichroism and birefringence. Liq Cryst 35:533–539CrossRefGoogle Scholar
  31. 31.
    Bobrovsky A, Shibaev V, Elyashevich G, Rosova E, Shimkin A, Shirinyan V, Cheng K-L (2010) Photochromic composites based on porous stretched polyethylene filled by nematic liquid crystal mixtures. Polym Adv Techn 21:100–112CrossRefGoogle Scholar
  32. 32.
    Ryabchun A, Bobrovsky A, Stumpe J, Shibaev V (2012) Novel generation of liquid crystalline photo-actuators based on stretched porous polyethylene films. Macromol Rapid Commun 33:991–997CrossRefGoogle Scholar
  33. 33.
    Bobrovsky A, Shibaev V, Cigl M, Hamplova V, Hampl F, Elyashevitch G (2014) Photochromic LC–polymer composites containing azobenzene chromophores with thermally stable Z-isomers. J Mater Chem C 2:4482–4489CrossRefGoogle Scholar
  34. 34.
    Sukhanova A, Venteo L, Devy J, Artemyev M, Oleinikov V, Pluot M, Nabiev I (2002) Highly stable fluorescent nanocrystals as a novel class of labels for immunohistochemical analysis of paraffin-embedded tissue sections. Lab Invest 82:1259–1261CrossRefGoogle Scholar
  35. 35.
    Revaux A, Dantelle G, Decanini D, Guillemot F, Haghiri-Gosnet A-M, Weisbuch C, Boilot J-P, Gacoin T, Benisty H (2011) Photonic crystal patterning of luminescent sol–gel films for light extraction. Nanotechnology 22:365701–3657112CrossRefGoogle Scholar
  36. 36.
    Dantelle G, Fleury B, Boilot J-P, Gacoin T (2013) How to prepare the brightest luminescent coatings? ACS Appl Mater Interfaces 5:11315–11320CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexey Bobrovsky
    • 1
  • Valery Shibaev
    • 1
  • Galina Elyashevitch
    • 2
  • Konstantin Mochalov
    • 3
    • 4
  • Vladimir Oleynikov
    • 3
    • 4
  1. 1.Faculty of ChemistryMoscow State UniversityMoscowRussia
  2. 2.Institute of Macromolecular CompoundsSt. PetersburgRussia
  3. 3.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  4. 4.Laboratory of Nano-bioengineering, Moscow Engineering Physics InstituteNational Research Nuclear UniversityMoscowRussian Federation

Personalised recommendations