Colloid and Polymer Science

, Volume 293, Issue 4, pp 1191–1204 | Cite as

Synthesis and characterization of cationic colloidal unimolecular polymer (CUP) particles

  • Ameya M. Natu
  • Marcus Wiggins
  • Michael R. Van De Mark
Original Contribution


Cationic colloidal unimolecular polymer (CUP) particles were prepared by using a lower concentration of the quaternary ammonium functional copolymers during the process of water reduction. True nanoscale (diameter 3–9 nm), zero-volatile organic content (VOC), spheroidal CUP particles, and self-stabilized via electro-repulsion of surface cationic groups were obtained. The viscosity of the cationic CUP systems was influenced by the electroviscous effects arising from the surface charge and the associated surface water layer. The density of surface water was 1.6 % greater than the bulk water density which was attributed to the structuring of water around charged quaternary ammonium groups. The equilibrium surface tension values decreased linearly with increasing concentration and surface charge density of CUP particles due to a greater reduction in surface energy. The rate of surface tension reduction determined by maximum bubble pressure method decreased with increasing concentration and the molecular weight of the CUP due to diffusion effects.


Cationic unimolecular polymer Water reduction Associated water fraction Surface water density Dynamic surface tension Kinetically limited adsorption 



The authors would like to acknowledge the Coatings Institute and the Department of Chemistry of Missouri S&T for the financial support and resources. We thank our fellow researchers: Sagar Gade and Yousef Dawib for their assistance.


  1. 1.
    Liu Q, Tang Z, Zhou Z, Zhou H, Ou B, Liao B, Shen S, Chen L (2014) A novel route to prepare cationic polystyrene latex particles with monodispersity. J Macromol Sci Pure 51(4):271–278CrossRefGoogle Scholar
  2. 2.
    Beyth N, Yuodvin-Farber I, Bahir R, Domb AJ, Weiss EI (2006) Antibacterial activity of dental composites containing quaternary ammonium polyethylenimine nanoparticles against Streptococcus mutans. Biomaterials 27(21):3995–4001CrossRefGoogle Scholar
  3. 3.
    Davis SS, Illum L (1988) Polymeric microspheres as drug carriers. Biomaterials 9(1):111–115CrossRefGoogle Scholar
  4. 4.
    Liu Q, Li Y, Duan Y, Zhou H (2012) Research progress on the preparation and application of monodisperse cationic polymer latex particles. Polym Int 61(11):1593–1602CrossRefGoogle Scholar
  5. 5.
    Samal SK, Dash M, Vlierberghe SV, Kaplan DL, Chiellini E, Blitterswijk CV, Dubruel P (2012) Cationic polymers and their therapeutic potential. Chem Soc Rev 41(21):7147–7194CrossRefGoogle Scholar
  6. 6.
    Riess G (2003) Micellization of block copolymers. Prog Polym Sci 28(7):1107–1170CrossRefGoogle Scholar
  7. 7.
    Liufu SC, Xiao HN, Li YP (2005) Adsorption of cationic polyelectrolyte at the solid/liquid interface and dispersion of nanosized silica in water. J Colloid Interface Sci 285(1):33–40CrossRefGoogle Scholar
  8. 8.
    Ramos J, Forcada J, Hidalgo-Alvarez R (2013) Cationic polymer nanoparticles and nanogels: from synthesis to biotechnological applications. Chem Rev 114(1):367–428CrossRefGoogle Scholar
  9. 9.
    Sun G, Zhang M, He J, Ni P (2009) Synthesis of amphiphilic cationic copolymers poly [2‐(methacryloyloxy) ethyl trimethylammonium chloride‐co‐stearyl methacrylate] and their self‐assembly behavior in water and water‐ethanol mixtures. J Polym Sci A Polym Chem 47(18):4670–4684CrossRefGoogle Scholar
  10. 10.
    Liu Q, Li Y, Shen S, Zhou Z, Ou B, Tang S (2011) Preparation of monodisperse cationic microspheres by dispersion polymerization of styrene and a cation-charged monomer in the absence of a stabilizer. J Macromol Sci Pure 48(7):518–525CrossRefGoogle Scholar
  11. 11.
    Mistry JK, Natu AM, Van De Mark MR (2014) Synthesis and application of acrylic colloidal unimolecular polymers as a melamine thermoset system. J Appl Polym Sci. doi: 10.1002/app.40916 Google Scholar
  12. 12.
    Riddles CJ, Zhao W, Hu HJ, Chen M, Van De Mark MR (2014) Self-assembly of water insoluble polymers into colloidal unimolecular polymer (CUP) particles of 3–9 nm. Polymer 55(1):48–57CrossRefGoogle Scholar
  13. 13.
    Van De Mark MR, Natu AM, Gade SV, Chen M, Hancock C, Riddles CJ (2014) Molecular weight (Mn) and functionality effects on CUP formation and stability. J Coat Technol Res 11(2):111–122CrossRefGoogle Scholar
  14. 14.
    Chen M, Riddles CJ, Van De Mark MR (2013) Electroviscous contribution to the rheology of colloidal unimolecular polymer (CUP) particles in water. Langmuir 29(46):14034–14043CrossRefGoogle Scholar
  15. 15.
    Chen M, Riddles CJ, Van De Mark MR (2013) Gel point behavior of colloidal unimolecular polymer (CUP) particles. Colloid Polym Sci 291(12):2893–2901CrossRefGoogle Scholar
  16. 16.
    Buckton G, Machiste EO (1997) Differences between dynamic and equilibrium surface tension of poly (oxyethylene)–poly (oxypropylene)–poly (oxyethylene) block copolymer surfactants (poloxamers P407, P237, and P338) in aqueous solution. J Pharm Sci 86(2):163–166CrossRefGoogle Scholar
  17. 17.
    Einstein A (1905) Ist die Trägheit eines Körpers von seinem Energieinhalt abhängig? Ann Phys 323(13):639–641CrossRefGoogle Scholar
  18. 18.
    Watterson IG, White LR (1981) Primary electroviscous effect in suspensions of charged spherical particles. J Chem Soc Faraday Trans 77(7):1115–1128CrossRefGoogle Scholar
  19. 19.
    Russel WB (1978) Bulk stresses due to deformation of the electrical double layer around a charged sphere. J Fluid Mech 85(4):673–683CrossRefGoogle Scholar
  20. 20.
    Vaynmerg KA, Wagner NJ (2001) Rheology of polyampholyte (gelatin)-stabilized colloidal dispersions: the tertiary electroviscous effect. J Rheol 45(2):451–466CrossRefGoogle Scholar
  21. 21.
    Jiang L, Chen SB (2001) Electroviscous effect on the rheology of a dilute solution of flexible polyelectrolytes in extensional flow. J Non-Newton Fluid 96(3):445–458CrossRefGoogle Scholar
  22. 22.
    Oncley JL (1941) Evidence from physical chemistry regarding the size and shape of protein molecules from ultra‐centrifugation, diffusion, viscosity, dielectric dispersion, and double refraction of flow. Ann Acad Sci 41(2):121–150CrossRefGoogle Scholar
  23. 23.
    Kreiger IM (1972) Rheology of monodisperse latices. Ad Colloid Interface 3(2):111–136CrossRefGoogle Scholar
  24. 24.
    Fefelova NA, Nurkeeva ZS, Munn GA, Khutoryanskiy VV (2007) Mucoadhesive interactions of amphiphilic cationic copolymers based on [2-(methacryloyloxy) ethyl] trimethylammonium chloride. Int J Pharm 339(1):25–32CrossRefGoogle Scholar
  25. 25.
    Du Noüy PL (1919) A new apparatus for measuring surface tension. J Gen Physiol 1(5):521–524CrossRefGoogle Scholar
  26. 26.
    Bohr N (1909) Determination of the surface-tension of water by the method of jet vibration. Philos T R Soc Lond 281–317Google Scholar
  27. 27.
    Tornberg E (1977) A surface tension apparatus according to the drop volume principle. J Colloid Interf Sci 60(1):50–53CrossRefGoogle Scholar
  28. 28.
    East GC, Margerison D, Pulat E (1966) Variation of polymer density with molecular weight and consequences in dilatometric studies of addition polymerization. Trans Faraday Soc 62:1301–1307CrossRefGoogle Scholar
  29. 29.
    Barbieri A, Prevosto D, Lucchesi M, Leporini D (2004) Static and dynamic density effects due to the finite lengths of polymer chains: a molecular-dynamics investigation. J Phys Condens Matter 16(36):6609–6618CrossRefGoogle Scholar
  30. 30.
    Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11(1):32–51CrossRefGoogle Scholar
  31. 31.
    Maryott AA, Smith ER (1951) Table of dielectric constants of pure liquids (No. NBS-514). Natl Bureau StandGoogle Scholar
  32. 32.
    Mohsen-Nia M, Amiri H, Jazi B (2010) Dielectric constants of water, methanol, ethanol, butanol and acetone: measurement and computational study. J Solut Chem 39(5):701–708CrossRefGoogle Scholar
  33. 33.
    Novoselova NV, Bobyleva AA, Lukovskaya EV, Sumtsova EA, Matveenko VN, Anisimov AV, Terenin VI (2007) Synthesis and colloid-chemical properties of new quaternary ammonium compounds. Theor Found Chem Eng 41(5):649–659CrossRefGoogle Scholar
  34. 34.
    Hiemenz P, Rajagopalan R (1997) Principles of colloid and surface chemistry, 3rd edn. Marcel Dekker, New YorkGoogle Scholar
  35. 35.
    Rattanakawin C, Hogg R (2007) Viscosity behavior of polymeric flocculant solutions. Miner Eng 20(10):1033–1038CrossRefGoogle Scholar
  36. 36.
    Powell DH, Barnes AC, Enderby JE, Neilson GW, Salmon PS (1988) The hydration structure around chloride ions in aqueous solution. Faraday Discuss Chem Soc 85:137–146CrossRefGoogle Scholar
  37. 37.
    Mahler J, Persson I (2011) A study of the hydration of the alkali metal ions in aqueous solution. Inorg Chem 51(1):425–438CrossRefGoogle Scholar
  38. 38.
    Wen WY, Saito S (1964) Apparent and partial molal volumes of five symmetrical tetraalkylammonium bromides in aqueous solutions. J Phys Chem 68(9):2639–2644CrossRefGoogle Scholar
  39. 39.
    Haggis GH, Hasted JB, Buchanan TJ (1952) The dielectric properties of water in solutions. J Chem Phys 20(9):1452–1465CrossRefGoogle Scholar
  40. 40.
    Nightingale ER Jr (1962) Viscosity of aqueous solutions III. Tetramethylammonium bromide and the role of the tetraalkylammonium ions. J Phys Chem 66(5):894–897CrossRefGoogle Scholar
  41. 41.
    Hribar-Lee B, Dill KA, Vlachy V (2010) Receptacle model of salting-in by tetramethylammonium ions. J Phys Chem B 114(46):15085–15091CrossRefGoogle Scholar
  42. 42.
    Babiaczyk WI, Bonella S, Guidoni L, Ciccotti G (2010) Hydration structure of the quaternary ammonium cations. J Phys Chem B 114(46):15018–15028CrossRefGoogle Scholar
  43. 43.
    Garcia-Tarres L, Guardia E (1998) Hydration and dynamics of a tetramethylammonium ion in water: a computer simulation study. J Phys Chem B 102(38):7448–7454CrossRefGoogle Scholar
  44. 44.
    Jorgensen WL, Gao J (1986) Monte Carlo simulations of the hydration of ammonium and carboxylate ions. J Phys Chem 90(10):2174–2182CrossRefGoogle Scholar
  45. 45.
    Markham GD, Bock CL, Bock CW (1997) Hydration of the carboxylate group: an ab-initio molecular orbital study of acetate-water complexes. Struct Chem 8(4):293–307CrossRefGoogle Scholar
  46. 46.
    Lei Y, Child JR, Tsavalas JG (2013) Design and analysis of the homogeneous and heterogeneous distribution of water confined within colloidal polymer particles. Colloid Polym Sci 291(1):143–156CrossRefGoogle Scholar
  47. 47.
    Merzel F, Smith JC (2002) Is the first hydration shell of lysozyme of higher density than bulk water? Proc Natl Acad Sci U S A 99(8):5378–5383CrossRefGoogle Scholar
  48. 48.
    Fedotova MV, Kruchinin SE (2011) Hydration of acetic acid and acetate ion in water studied by 1D-RISM theory. J Mol Liq 164(3):201–206CrossRefGoogle Scholar
  49. 49.
    Turner JZ, Soper AK, Finney JL (1995) Ionic versus apolar behavior of the tetramethylammonium ion in water. J Chem Phys 102(13):5438–5443CrossRefGoogle Scholar
  50. 50.
    Manning GS (1975) Limiting law for the conductance of the rod model of a salt-free polyelectrolyte solution. J P Chem 79(3):262–265CrossRefGoogle Scholar
  51. 51.
    Okubo T (1988) Surface tension of synthetic polyelectrolyte solutions at the air-water interface. J Colloid Interf Sci 125(2):386–398CrossRefGoogle Scholar
  52. 52.
    Tanvir S, Qiao L (2012) Surface tension of nanofluid-type fuels containing suspended nanomaterials. Nanoscale Res Lett 7(1):1–10CrossRefGoogle Scholar
  53. 53.
    Diamant H, Andelman HD (1996) Kinetics of surfactant adsorption at fluid-fluid interfaces. J Phys Chem 100(32):13732–13742CrossRefGoogle Scholar
  54. 54.
    Ferdous S, Ioannidis MA, Henneke DE (2012) Effects of temperature, pH, and ionic strength on the adsorption of nanoparticles at liquid–liquid interfaces. J Nanoparticle Res 14(5):1–12Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Ameya M. Natu
    • 1
  • Marcus Wiggins
    • 1
  • Michael R. Van De Mark
    • 1
  1. 1.Department of Chemistry, Missouri S & T Coatings InstituteMissouri University of Science and TechnologyRollaUSA

Personalised recommendations